
1

Domain-driven Actionable Process Model Discovery

Bernardo Nugroho Yahya 1), Minseok Song *,2) Hyerim Bae 3), Sung-ook Sul 4), Jei-Zheng Wu 5)
1) Department of Industrial and Management Engineering, Hankuk University of Foreign Studies,

Oedae-ro 81, 449-791, Yongin, South Korea

bernardo@hufs.ac.kr
2)Department of Industrial & Management Engineering, POSTECH (Pohang University of Science and Technology),

77 Cheongam-Ro, 37673, Pohang, South Korea

Phone: +82 – 54 – 279 – 2376

mssong@postech.ac.kr
3)Department of Industrial Engineering, Pusan National University

Pusandaehakyo-ro 63 bongil 2, Geumjong-Gu, 609-735, Busan, South Korea

hrbae@pnu.ac.kr
4) Total Soft Bank, Ltd.

66-39 Bansong-ro 513, Haeundae,

612-070 Busan, Korea

sosul@tsb.co.kr
5) Department of Business Administration, Soochow University

56 Kueiyang Street, Section 1,

Taipei 100, Taiwan, R.O.C.

jzwu@scu.edu.tw

Abstract

Process discovery is a type of process mining that constructs a process model from the event logs of an information system. The

model discovered using process discovery techniques and the process as perceived by users will always differ in some ways and

to some extents. In particular, less structured process, such as operational process in business and manufacturing, often result

overly confusing, spaghetti-like, process models caused by the inherent complexity of the process. As a result, the mined model

has many limitations for providing the users with explicit knowledge that can be directly used to influence behavior for the user’s

interest. Explicit knowledge, as later called by actionable knowledge, is an important representation on measuring the

interestingness of mined patterns. This actionable knowledge, which is incorporated with users’ background knowledge and

based on some notions of actionable rules, can result an actionable process model. Undoubtedly, domain experts, who know the

process well, play a key role to enhance the mined model into an actionable model by their involvements during the discovery

process. This paper presents a discovery method to obtain an actionable process model that is based on both the event relation in

the log and users’ knowledge to improve the incompatibility of the traditional process mining approaches. Users can set their

* Corresponding Author

2

knowledge in terms of constraints. Unlike the existing approach, the proposed approach synthesizes the activity proximity and

attempts to extract behavior satisfied by the constraints which may be hidden in the event logs for resulting an actionable process

model. In addition, the proposed method is used in order to achieve a sound process model when the existence of the constraints

does not satisfy the workflow soundness property. The method was implemented in the ProM framework and tested on a real

process.

Keywords: Process mining, business process, proximity score, users’ knowledge, integer linear programming

1. Introduction

A process model is a means of communication that facilitates stakeholders’ understanding of complex business

processes (Kawalek and Kueng, 1997). Stakeholders typically formalize a process model using traditional top-down

a priori design approaches. Although they have their own understandings about process model flow, a real

application might result in different sequences. Process discovery, a type of process mining, constructs a process

model from information systems’ event logs. Such a discovered model, most probably, will differ from the process

as perceived by stakeholders, since the discovery techniques can automatically derive a process model based on the

statistics hidden in the event logs. As a result, stakeholders, most of the time, find difficulties on understanding the

extracted patterns from the discovered model. Since the extracted patterns from process discovery are mostly related

to the technical interestingness for process analysts, the business interestingness, called as actionable model, is often

neglected.

In the field of knowledge discovery, the involvement of users, i.e., stakeholders, takes place to examine the

extracted patterns for their subjective measures, as a measure of interestingness (Silberschatz and Tuzhilin, 1996). In

the subjective (user-oriented) point of view, the extracted patterns can be classified as unexpected – a pattern which

is “surprising” to the user- and actionability – a pattern that the user can act on it to his advantage. Therefore,

actionable model can be considered as a result the involvement of users to afford important grounds to business

decision makers. There was a highlight on the topic of actionable knowledge discovery that it will be one of the

Grand Challenges for extant and future data mining (Ankerst, 2002, Fayyad et al., 2003). Since then, actionable

knowledge discovery had been enhanced to satisfy the real business needs (Cao and Zhang, 2007, Yang et al., 2007,

Cao et al., 2010) because the real world problems are usually highly constraint-based and tightly embedded in

domain-specific business rules. Nevertheless, the role of users, i.e., stakeholders, in process mining has been given

little attention so far.

Process mining is presumed as an automated process to discover a model using algorithms and tools without

human involvement. Process mining, which includes aspects such as discovery, conformance and enhancement,

have been proved to solve business and industrial applications (Aalst et al, 2007; Goedertier et al., 2011; Rebuge and

Ferreira, 2012; Wang et al, 2014, Cho et al., 2015). This situation partly results from the scenario that process

mining is based on event logs where process mining algorithms extract patterns from data based on specific

conditions, e.g. a log that has only start and end. Although a mined model can show patterns such as “hidden” and

“unused” flow, it still remains some questions about how to extract specific patterns, i.e., actionable patterns. Some

efforts have been considered to improve the mined model using proprietary filters. For example, the work on process

3

mining of test processes in semiconductor manufacturing mentioned the necessity to apply various filtering

techniques to show different level of abstractions (Rozinat et al., 2009). However, filtering the log requires some

works, e.g., it is not interactive, and potentially loses the connection to the previous stage of filtering (Rozinat et al.,

2009). In addition, the used of filters is intended to reduce incorrect or corrupted information in logs, i.e., noise.

Since the nature of noise is assumed as either infrequent or incomplete information, the filter techniques may be

insufficient to tackle a positive noise, e.g., purchasing a diamond that occurs infrequently but invaluable, that may

provide business interestingness. As a result, actionable patterns, which are a part of business interestingness, are

often neglected since they are hidden in large quantities of data. Thus, the involvement of users on process mining

plays a key role for generating an actionable model.

In general, process discovery algorithms and techniques only focus on the discovery of model satisfying

expected technical significance (Gunther and Aalst, 2007, Weijters et al., 2006). Some process discovery techniques

involve users to filter and configure the mined model (van der Aalst et al., 2004; Bergenthum et al., 2007); however,

the results remain unsound and incompatible. Other techniques related to the constraint-based approach, artificial

generated negative events (AGNEs) (Goedertier et al., 2009) for example, offer detailed descriptions of automatic

generated artificial negative events rather than generating a model using domain experts’ constraints. The work on

process discovery via precedence constraints using constraint programming (Greco et al., 2012) intended to involve

users for discovering a model. However, the aspect of business interestingness, i.e., users’ interactivity to build the

constraints, had been neglected. Fundamental work on process discovery is therefore necessary to cater for critical

elements in real-world applications such as expert knowledge. This is related to algorithm innovation and

performance improvement that will balance technical interestingness and business interestingness.

This paper proposes a new discovery technique, called proximity miner, that is designed to discover an

actionable process model with the involvement of domain experts. The main contributions of this work are

developing an interactive mode process discovery tool with the involvement of users and demonstrating the

effectiveness and flexibility of the proposed approach in tackling real-world process mining. In addition, this

approach not only utilizes pre-processing tasks, i.e. using filtering and mining as a back-and-forth cycle procedure,

but also applies post-analysis that enables users to refine mined model with a set of constraints for generating

actionable process model. Actionable process model in this paper is a process model that satisfies the constraints

from a domain-specific expert in terms of their value in decision making.

To some extent, the objective of this approach is similar to that of process discovery via precedence constraints,

however, its strategy and contributions differ in five ways. First, it introduces an integer linear programming (ILP)-

based domain-constraints approach that entails less computation than constraint programming (Salvagnin, 2008).

Second, it presents the concept of categorization, which is required when the log consists of several event types.

Third, it introduces proximity, which guarantees the inclusion of both the observed and the “hidden” behavior of the

event logs in our ILP model. The use of proximity ensures the production of a sound model when users’ background

knowledge is not available (“hidden”) from the log-derived graph. Fourth, this approach uses an interactive interface

that allows users to iteratively set the constraints for refining the control-flow factors. Fifth and finally, it can be

considered an actionable model builder that does not require either any effort in drawing from scratch or back-and-

4

forth cycle procedure between filtering and mining tasks. The proposed approach was tested by means of a case

study conducted in the port logistics process domain, and was verified on the basis of quantitative and qualitative

evaluations.

The remainder of this paper is organized as follows. Section 2 discusses the relevant process mining work

available in the literature. Sections 3 and 4 present a running example of the proposed discovery algorithm and the

overall methodology, respectively, in demonstrating how the ILP is combined with the concept of proximity. Section

5 analyzes the main features of our approach, its implementation in the ProM framework, and the evaluation results.

Section 6 concludes the paper.

2. Related Work
2.1. Process Mining

Process mining is a recognized and well-known technique for mining process models from logs. It includes

classes such as discovery, conformance and enhancement. Various approaches to the construction of process models

from logs (i.e. process discovery) and the measuring of discrepancy between logs and a given predefined process

model (i.e. conformance testing) have been developed over the past few years (Kawalek and Keung, 1997; van der

Aaslt et al., 2004; Weijters et al., 2006; van der Aalst, 2011; Gunther and Aalst, 2007; Rozinat et al., 2007; de

Medeiros et al., 2007). Enchancement, which also needs a prior model, is used to enrich the mined model based on

some performance data (Aalst, 2011). The concept has been applied to some industries such as health, logistics and

telecommunications (Aalst et al, 2007; Goedertier et al., 2011; Rebuge and Ferreira, 2012; Wang et al, 2014; Cho et

al, 2015).

However, most of the applicability-related work has been concerned with the general concept of process mining,

with little focus on domains. This means that when analysts are eager to analyze a domain-specific problem, domain

experts must be involved to interpret the result. Some approaches to cover specific behaviors in a process in terms of

particular flows have been proposed, such as non-free choice (Wen et al., 2007), size of discovery problems

(Carmona and Cortadella, 2014), probabilistic analysis (Cook et al, 2004), control dependencies with conditions

(Hwang and Yang, 2002), activities’ lifespans (Pinter and Golani, 2004), the decomposition approach (Aalst, 2013)

and the light region-based approach (Carmona, 2012). None of these previous studies considered the role of domain

experts in process model discovery.

Some previous work has considered apriori knowledge setting, however, little attention has been taken toward

actionable process model discovery. Using the traditional process mining techniques, two approaches, specifically

alpha mining (van der Aalst et al., 2004) and region-based mining (Bergenthum et al., 2007), allow users’

interventions to improve the quality of mined models. Unfortunately, since they use manual techniques, their

modifications to reflect user requirements are error-prone and, in some aspects, unsound. For example, when a user

sets two events as parallel, it results a connectedness problem (some activities may not reach finish properly). Other

approach such as alpha+ miner (de Medeiros et al., 2004) could result better than the previous approaches. However,

the model still could not capture the business interestingness. The current approaches, including users’

recommendations (Barba et al., 2014), semantic log-purging (Ly et al., 2012), artificial generated negative events

5

(AGNEs) (Goedertier et al, 2009) and process discovery via precedence constraints (Greco et al., 2012) were

designed to compensate for the limitations of the traditional techniques. Users’ recommendations allow for their

intervention in process execution optimization. Semantic log-purging applies expert knowledge as a semantic

constraint by purging constraint-violating events from the log. Both users’ recommendations and semantic log-

purging differ from our approach in terms of process discovery. AGNEs, meanwhile, offers detailed descriptions of

generated artificial negative events (i.e. negated events) rather than generating constraints. The generated negated

events, which also include log noise, possibly lead to different outcomes and sometimes false conclusions. As for

the work on process discovery via precedence constraints, it is quite similar to the present approach in some aspects.

However, it included no discussion on the soundness property (e.g. an expert provides the desired constraints, which

lead to the discovery of an unsound process model), which is the most important in the process discovery domain.

Moreover, other issues such as additional constraints (i.e. designated start, designated end), which are critical to

process discovery, and interface for the convenience of users have not been investigated in detail. The present study

attempted to resolve the limitations of the previous work and enhance it by creating a support for critical issues of

actionable process model discovery (i.e., soundness and constraints builder) and building interactive interfaces for

users’ convenience. Rather than receiving a collection of constraints once at a time, this approach allows users to

iteratively set the constraints to refine the model.

There has already been a study on process mining using ILP (van der Werf et al., 2009). ILP Miner had been

proposed as a means of process model discovery based on the optimization problem. However, it focused on a

scheme of process model extraction whereby all possible orderings of events must be satisfied under log behavior

constraints. It thus differs from the proposed approach’s expert-knowledge and soundness-property-based

constraints. This method, as compared with that which uses a constraint programming problem, is expected to

reduce the time taken to discover a model (Salvagnin, 2008).

With the proposed approach, additionally, an actionable process model, instead of a reference model, can be

built. There are various works in terms of building reference model based on process model variants (Li et al., 2011;

Yahya et al., 2012a; Yahya et al., 2012b). The previous work (Yahya et al., 2012c) had proposed the proximity score

to automatically generate a reference model. And in terms of process mining, most studies have used configurable

reference (process) models to derive individual process variants (Gottschalk et al., 2008; La Rosa et al., 2008; van

der Aalst et al., 2008). The proposed study, by contrast, employed an ILP approach to generate a sound process

model and reutilized some of the measures in proximity score (Yahya et al., 2012c). In order to obtain more

comprehensive results in comparison with the previous work (Yahya et al., 2013), the technique focuses more on

two salient features, comprehensive evaluation by both process analysts and domain experts and automatic

categorization of multiple event types. With regard to the result, the present study result in the form of a graph is

closer to that of the graph-based mining approaches (Agrawal et al, 1998; Hwang and Yang, 2002).

2.2. Actionable knowledge discovery

6

Actionable knowledge discovery, an origin of actionable process model discovery, has been popular since it was

first highlighted as a future data mining topic (Ankerst, 2002, Fayyad et al., 2003). As a matter of fact, the term

actionability mainly measures the ability to suggest business decision-making actions, and it has been enhanced to

satisfy real business needs (Cao and Zhang, 2007, Yang et al., 2007, Cao et al., 2010). It also has been pointed out

that the involvement of domain experts plays a key role in knowledge discovery, particularly in the extraction of

interestingness (Yoon, 1999). Actionable knowledge discovery relates to beliefs that are obtained from

interestingness measures. The interestingness measures are mostly related to objective measures, with less

consideration of subjective measures. Taking account of subjective interestingness is to personalize the discovered

model, in which a pattern of interest to one user might be of no interest to another. The pattern is either actionable or

unexpected.

An actionable pattern is interesting because the user can do something about it; that is, the user can react to it to

his or her advantage. To use another word, actionability is an important subjective measure of interestingness,

because users are mostly interested in the newly discovered knowledge that permits them to do their jobs better by

taking some specific actions in response to it (Liu et al., 2000; Bie, 2013). On the other hand, an unexpected pattern

is surprising to the user; and it is certainly interesting, then, when the user can do something about it. Otherwise, the

pattern contradicts the user’s existing knowledge, and consequently holds less interest for that user. That is, the

judging of unexpected patterns to be actionable or not depends on the user’s system of beliefs. Thus, the

interestingness rules fall into three categories: rules that are unexpected but actionable, those that are unexpected but

not actionable, and those that are expected and actionable (Liu et al., 2000). Even though Silberchatz and Tuzhilin

(1995) mentioned that unexpectedness and actionability are, in general, independent of each other, both of them are

considered to fall between the aforementioned three categories. The users’ role (which has been given little attention

so far) in determining an actionable process model that provides a benefit for business decision making is therefore

significant in this study. This study attempted to apply the three categories to some rules as the prior knowledge of

domain experts.

3. Running Example

In this study, we used the port logistics process of landside transport. In order to briefly explain the port logistics

process, we define nine main activities as listed at Table 1. Discharging by quay crane activity followed by

discharging by yard crane activity describes the process of discharging a container from a vessel using a quay crane

and moving it into the yard using a yard crane. If a scheduled truck is coming into the port, the container should be

ready for delivery. In any case, the container stays in the yard and waits for Yard crane task for Gate Out. This is a

typical example of the landside discharging process.

Yard crane task for Gate In activity describes the movement of an incoming container as it proceeds into the port

from outside. If a vessel is berthed at the port, the container should be ready for loading activity. So, the container

7

will flow from Yard crane task for Gate In to Loading by yard crane, and will then proceed to the vessel via the

Loading by quay crane activity. This is a typical example of the landside loading process.

There might be additional activities for relocation of the container due to schedule changes or process

optimization: remarshalling and shuffling. Remarshalling refers to the task of rearranging export containers

scattered around within a block into designated target bays of the same block. It consists of two steps: remarshalling

pickup and remarshalling stack. Meanwhile, shuffling refers to the repositioning of a container to another storage

location due to an inability to access other containers that are stored below it. Minimal occurrence of these two

activities is preferable.

Table 1. Nine main activities in port logistics process with index

Activity Name (abbreviation) Index
Discharging by quay crane (QD) A
Discharging by yard crane (YD) B
Yard crane task for Gate Out (YO) C
Yard crane task for Gate In (YI) D
Loading by yard crane (YL) E
Loading by quay crane (QL) F
Remarshalling PickUp (RP) G
Remarshalling Stack (RS) H
Shuffling (S) I

Table 2. Fragment of traces with number of cases

Traces Number of cases
<A, B, I, C> 3000
<A, B, I> 1000
<A, B, E, F> 800
<A, B, I, I, I,C> 150
<A, B, I, I> 150
<A, B, G, H, G, H, C> 50
<D, G, H, E, F> 10
<A, F> 9
<G, H> 1

Figure 1. Process model extracted based on traces in Table 2 with artificial start and end

A B I C

Start

D

G H End

E F

8

To illustrate the necessity of our approach, we use the sample log in Table 2. All dependency from the traces in

Table 2 can be seen in Figure 1. Suppose that there are 9 distinct traces among 5170 cases. Let L be an event log.

Event log L is a multiset of traces, and each trace is a sequence of activities. Thus, a trace <A, B, I, C> denotes a

sequence that is started with A, followed by B and I, and ended with C. The frequency of each trace is represented as

a superscript. For example, <A, B, I, C>3000 means that there are 3000 cases of that trace. We are interested in

finding actionable patterns that often are neglected by traditional process mining approaches. For example, low-

frequency behavior such as <A, F>9 fails to be a pattern extracted by heuristic miner with the default parameters.

However, from the perspective of domain experts, this pattern is actionable in the real world. For example, a

container that has been discharged from a vessel through a quay crane will soon be allocated to another vessel for

export. Thus, the container will be stored for loading by the nearest quay crane. When we consider only the

occurrence of this pattern, it is almost impossible to include this pattern in the model. However, other traces such as

<A, B, E, F>800 can reflect that A and F have a closeness (proximity) to some degree. Thus, a measure is needed to

increase the confidence to include the pattern in the process model as an actionable pattern instead of omitting it due

to low-frequency occurrence. In this sense, this pattern is unexpected but actionable.

Other examples are related to activities I, G and H. Domain experts’ belief suggests that there should be no iteration

of activity I or of G or H. In fact, activity I is in the loop pattern in the traces <A, B, I, I, I, C>150 and <A, B, I, I>150.

Since <A, B, I, C>3000 and <A, B, I>1000 dominate the other two, we can intuitively say that the loop is likely to be

not actionable. As well as activity I, the pattern of the relation between G and H in the traces <A, B, G, H, G, H,

C>50 and <D, G, H, E, F>10 dominates the trace <G, H>1. In other words, allocating activity G as a start activity and

activity H as an end activity is not expected. Thus, it can be categorized as unexpected and not actionable.

This proposed study undertook to answer the question, "Does the process flow correctly?"; that is, based on

event logs, we automatically constructed a process model showing the ordering and frequency of flows.

Subsequently, we formulated a proposed new approach in order to answer the question, "How do we obtain an

actionable process model based on user’s knowledge?"

4. Proposed Methodology
This section explains the proposed method. First, formal definitions are provided. Next, the ILP-based mathematical

programming is described.

4.1. Formal Definitions

This section presents the notations used in this paper. First, the definition of events is given. Second, the causality

graph definition, as the result of this study, is given. Finally, the approach and domain knowledge definitions are

described.

Definition 1. Event log (L)

9

An event log is a multiset of traces. Each trace is mapped into a case and consists of a collection of events, which is

defined as follows:

Event. E is a set of events and E = A × Y × T where A is a set of activities, T is a set of timestamps and Y is a set of

event types. It should be noted that although the event types are not explained in the earlier example, it will be used

in the later section. To represent the activity, type and timestamp of each event, we use the following notation: e.act

refers to the activity name, e.type to the event type, and e.time to the event timestamp. If e=(YardJobLoad,

COMPLETE, 2012-06-12 01:54:32), then e.act = YardJobLoad, e.type = COMPLETE, and e.time = 2012-06-12

01:54:32.

Case. C is a set of events for its instance, called as case, and C = {ck | k=1,..., K}. A case ck corresponds to the trace

𝜎k, <ek1, ek2, ..., ekn> where each eki denotes the i-th event in case k. eki ∈E is an event in a single workflow instance

for 1< i < Ik, and Ik is the total number of events in the k-th case. The traces are the sequences of events that indicate

the activity flow from beginning to end. There might be a trace with multiple occurrences. Thus, a superscript

number on each trace represents the frequency of the trace. For example, event log L = [<A, B, I, C>3000, <A,B,I>1000

, <A, B, E, F>800, <A,B,I,I,I,C>150, <A, B, I, I>150, <A,B,G,H,G,H,C>50 , <D, G, H, E, F>10, <A,F>9, <G,H>1].

The causal relations, which represent adjacent relationship, between events can be represented in a dependency

graph.

Definition 2. Dependency Graph

A dependency graph is a tuple of G = (V, ED), which is defined as follows:

• V ⊆ A × Y is set of nodes (vertices) which represent a product of activity and event type.

• ED ⊆ V × V is a set of edges where two events are adjacent. Suppose, edkij ={(vi, vj) | vi, vj ∈V}, to

represent eik ≻ ejk, where eik is the immediate predecessor of ejk (ejk is the immediate successor of eik) with

no event emk ∈E(L), such that eik ⊁ emk and emk ⊁ ejk and eki.time < ekj.time. Thus, two events are having

causal relations from eik to ejk and represented as a causal matrix F, where Fij ∈F is the number of events

eik ≻ ejk for all k in L.

• v0 represents as a start node if there exist vi ∈V such that ∃k edki0 = ∅.

• vN represents as an end node if there exists vj ∈V such that ∃k edkNj =∅.

For example, an event log L = [<A,B,I,C>3000, <A,B,E,F>800, <A,F>9] can be projected into a dependency graph with

the set of nodes (V) are {A, B, C, E, F, I} and the set of edges are {(A, B), (B, I), (I, C), (B, E), (E, F), (A, F)} with

A=v0 and C, F = vN representing the start and end nodes, respectively. Thus, the causal matrix F represents the

causal relations between two nodes, which are the elements of the set of edges. For example, a relation between B

and I (i.e. FBI = 3000) shows as the number of cases that node B occurs as the immediate predecessor of node I. In

other cases, there is a relation between B and E (i.e. FBE = 800). The choice between either executing I or E

represents a relation of exclusive OR (XOR-split).

10

Suppose, the event log LM = [<M1, M2, M3, M4>100, <M1, M3, M2, M4>90, <M1, M5, M4>10] which each index

represents as follows; M1: Check Financial, M2: Check Loading certificate, M3: Check Unloading certificate, M4:

Build Work Schedule, M5: Inspect the certificate. After executing of the first task M1, there is a choice between

either executing M2 and M3 concurrently (i.e., in parallel or in any order) or just executing activity M5. The

execution of both M2 and M3 in parallel is considered as AND relationship. Mining the AND relationship is

difficult since the relationship is implicit in the event log. The traces already give the information that activities M2,

M3 and M5 are the successor of activity M1. If two activities (e.g. M2 and M5) are in the AND relationship, the

pattern <...M2, M5...> can appear in the event log. If two activities (e.g. M2 and M5) are in the XOR relationship,

the pattern <... M2, M5...> is not possible. As aforementioned, I and E are in the XOR relationship. Based on the

traces in the event log (refer to Table 2), there is no cases which have patterns such as either < … I, E, …> or <…E,

I, …>. LOOP relationship is the possibility to execute the same activity multiple times. A distance loop, for example

the traces < A, B, G, H, G, H, C >, and length-one loop, for example < A, B, I, I > are two possible LOOP

relationships extracted from event log.

To mine such AND relationship, it needs a particular mechanism to extract the (hidden) pattern. The mechanism is

adopted from heuristic miner to find the relationships of the two behaviors that are above a particular threshold

(Weitjers, 2006). Suppose that edkij =(vi, vj) | vi, vj ∈V and eik.act = vi.act, eik.type = vi.type and ejk.act = vj.act, ejk.type

= vj.type and eik, ejk ∈ E(L). Each behavior can be described as follows:

• AND behavior. There can be AND behavior such that eik ≻ ejk ≻emk appears in trace k, and eil ≻ eml ≻ejl in

trace l to some degree. Thus, two nodes have AND behavior if and only if (Fjm + Fmj)/ (Fij + Fim + 1)> Ω,

Ω is a threshold, and (0,1]	 ∈ Ω. That is, AND behavior exists on the model if and only if Fjm > 0 and Fmj

>0 and there exist node vi such that Fij > 0 and Fim >0. For example, using the event log LM, the value of the

measure of M2 and M3 equals to (100+90) / (100 + 90 + 1) = 0.9947. If the value is higher than specified

threshold (e.g., 0.5), then the two nodes (e.g., M2 and M3) are in the AND relationship. Two nodes could

be in the AND relationship when both of the nodes have the same immediate predecessor node. Intuitively,

it has path from immediate predecessor node to those two. If the value of relation of two nodes does not

satisfy the conditions (e.g., greater than 0.5), it is an XOR relationship.

• LOOP behavior. There can be loop behavior such that eik ≻ ejk and eik .act = ejk.act and eik .type = ejk.type

appears in a trace. This loop is considered as a length-one loop, and Fii is greater than 0. For a distance

loop, it can easily be discovered when there is a distance that can be measured by proximity between two

events, as will be explained in the later section.

Since an event can contain transactional information, the dependency graph can provide different result due to

additional information on the causal relations. For example, an activity can have more than one event type, e.g., start

and complete. The dependency graph can show misleading result to practitioners when there is no clear indication of

the respective activity. A merging function, denoted as categorization, is necessary to perceive the process in regard

to the activity.

11

Let E = A × Y × T be a set of events over A and 𝜎	 =	 <e1, e2, ..., en> an event trace and Y = {0,1}. 𝜎 is able to be

categorized if and only if

1. ∀ ei ∈	 E ∧ ei.type = 0 ⇒ ∃ej	 ∈	 E | ej.type = 1 ∧ ei.act = ej.act ∧ j > i, i.e. every START event has a

corresponding COMPLETE event.

2. ∀ ei ∈	 E ∧ ei.type = 1 ⇒ ∃ej	 ∈	 E | ej.type = 0 ∧ ei.act = ej.act ∧ j < i, i.e. every COMPLETE event has a

corresponding START event.

Definition 3. Categorization

Categorization is defined as the organization of events according to the activity name.

Let e1, e2, e3, e4∈E	 where e1.act = e3.act and e2.act = e4.act and e1.type = e2.type and e3.type = e4.type. Suppose

a1, a2 ∈A and {0,1}∈Y and v1, v2, v3, v4∈V. By projecting each event into nodes, we get v1 = (a1,0), v2 = (a2,0), v3 =

(a1,1) and v4=(a2,1). The merging function is to group the same activity of different types regardless of the event

sequence. For example, suppose there is a trace <e1, e2, e3, e4>. The sequence of the dependency graph follows the

trace sequence while categorization attempt to highlight the activity instead of nodes. Suppose G’ ⊆	 G. Thus, the

merging function generates graph G’ with four nodes {v1, v2, v3, v4} and highlight the merge function result that is

the set of precedence relationship of two events of same activity with different event types, {(v1, v3), (v2, v4)}. It

should be noted that categorization, which is used to express the process flow on the basis of activity, is particularly

for better visualization.

When an event that is not a start event is reachable from another event, we can show the relationship in terms of

proximity. But before proximity can be measured, first we must define the terms traceable event and distance.

Definition 4. Traceable Event

A traceable event is a subset of events such that a given event is reachable from another event. An event that is not a

start activity should have a set of traceable events defined as follows.

Let L be an event log. Traceable event set (R) is denoted as ri ⊆ {(eki, ekj)| eki ≫ ekj , ∀eki, ekj ∈E(L)}, where eki ≫ ekj

means that ekj is reachable from eki in the k-th trace (i.e. eki can reach ekj). The element (eki ≫ ekj) represents the fact

that eki precedes ekj at certain distances, which is to say, it is not an immediate predecessor. When there exist eki ≫ ekj

and eki .act= ekj.act and eki .type= ekj.type then it considers as length-n loop which n represents the distance between

two events.

To indicate the traceable events, some measures are needed. This study applies distance and proximity measures.

The proximity of both events can be measured according to the distances.

Definition 5. Distance

12

Distance (dijk) is defined as an integer value indicating that two events eik and ejk are either immediate predecessor

(=1) or are between some other events (>1) (Yahya et al., 2012c). Distance between two events can be derived from

a path. A path from a to b is denoted as a list of events, < e1k, e2k, …, en-1 k, enk > with n > 1 such that e1k = a and enk

= b and ∀i Î {1, …, n-1} (eik ≻ ei+1k). Suppose that paijk is denoted as a sub-path from an event eik to another event ejk in a

case k, and that | paijk| is the number of events in the sub-path.

• paijk={eik, ei+1k, ei+2k, …, ej-1 k, ejk}, (eik ≻ ei+1k), (ei+1k ≻ ei+2k) , (ej-1k ≻ ejk), ∀e Î	𝜎k

Hence, the distance between two events, eik and ejk, and 1 ≤ i < j ≤ n is

(1).

From the traces in the event log, we can measure the proximity based on the definitions of dependency graph,

traceable event, and distance.

Definition 6. Proximity

Proximity is defined as the closeness of two activities. Using the concept of causal relations, two events that exist in

a trace have such closeness, and the causality with hkij equals 1. This means that the distance of two events, ei and ej,

with dkij > 0, has the causality hkij = 1, otherwise 0. When dkij = 1, we say that the two events have a causal relation

and that the occurrence of causal relations, Fij, is incremented. However, when dkij > 1, the two events are included

in traceable events, and there is no increment of Fij. To indicate the closeness, a proximity value is used. Proximity

value qijk is denoted as in the following Eq. (2).

(2)

To determine the overall proximity score (PSij), it is measured as in the following Eq. (3),

(3)

where |Hij| is the number of cases when hkij = 1 for all k . Instead of proximity, PSij can be considered as the value of

confidence within a certain threshold.

For example, let us consider an event log L = [<A,B,I,C>3000, <A,B,E,F>800, <A,F>9]. The distance of A and B in

each trace is 1. Therefore, the causal matrix F for A and B is FAB = 3800, and the overall proximity score is 0.9997.

In terms of events A and F, the relationship consists of both an immediate predecessor and traceable events. Thus,

the proximity between the two should be measured. For the events on which A and F are located as immediate

predecessors, it updates the causal matrix F; that is, FAF = 9. In the trace <A, B, E, F>, the proximity value between

1||
1

+
=
å
=

ij

K

k

k
ij

ij H

q
PS

k
ijk

ij k
ij

h
q

d
=

1k k
ij ijd pa= -

13

A and F is 1/3=0.33, since hkAF=1 and dkAF=3. The overall proximity score for events A and F is (0.33 * 800) + (1 *

9) / (800 + 9 + 1)= 0.337. To obtain an actionable model using the proximity score, we need to ensure that those two

events have a causal relationship. For example, in one case, events B and F have a causal relationship; their

proximity score, therefore, is (0.5 * 800) + (1 * 1) / (800 + 1 + 1) = 0.5. If we want to find the actionable relation

from the log with a confidence of 0.3, then both the relations A - F and B - F are included in the discovered model.

The overall proximity score is similar to transitive closure measures. In this study, we adopted the Floyd-Warshall

algorithm and modified it to correspond to the data properties. The detailed procedure is as follows.

The line numbers 1 - 4 are variable declarations for the algorithm. In lines 5-22, it runs for each case. This means

that the traces are analyzed individually. First, the causal relations matrix is measured for variable F(i,j). The

measure starts to collect the index of each event (lines 7-8). Line 9 denotes a variable input to represent the

occurrence of adjacency. If there exists a relationship between i and j (line 10), the value is retrieved from matrix

F(i,j) and the variable occur is updated by adding occurrence with the value of 1. Next, matrix F(i,j) is updated

(line 13). If there is no pre-existing relationship, the variable occur remains 1. After we obtain the adjacency of

events, we want to measure the closure relations of events. By recursively finding the events in the same case as i < j

(line 15), the overall proximity score is calculated, starting with the subtraction of the index (line 16) followed by

OverallProximity(Log L)
1 int distance, i, j, occur, occurrence;
2 double[][] d, q;
3 Matrix F, PS;
4 Map<key, value> H;

5 foreach pk ∈ L do{ //each case / process instance

6 foreach ei ∈ pk do{ // each event in a case
7 i ß index of ei
8 j ß index of ei+1
9 int occur = 1;
10 IF (F(i, j) exist){
11 occurrence ß retrieve the value of F(i,j);
12 occur ß occurrence + 1;}
13 F(i,j) ß put occur;

14 for each ej ∈ pk and i < j do { //closure events in a case
15 j ß index of ej;
16 d(i,j) ß j - i;
17 q(i,j) ß 1 / distance;
18 PS(i,j) ß current value of PS(i,j) + q(i,j);
19 Let the value of H be added by 1 for the key i,j;
20 } //end foreach
21 } //end foreach
22 } //end foreach
23
24 foreach item i and j in PS do{
25 double val ß value of PS, vals ß value of H;
26 update value of PS ß val / vals; //
27 }
28 return PS;

14

the measurement of the proximity (line 17) and ending with the updating of the overall proximity score (line 18). In

this step, the overall proximity score is the summation of all proximity scores. Finally, the overall proximity score is

updated by dividing by the number of cases, |H| (lines 24 -27). The running time of the overall proximity score is

O(kn2), where k is the number of cases in log L and n is the maximum number of events in the existing cases.

According to the prior domain knowledge given by experts, there could be either unknown or additional relations

that lead to problems such as soundness. Soundness aims to verify the model correctness; it means that all of the

dependencies with respect to L exist in G; that is, for every causal relation with respect to L, there is a corresponding

path in G. The overall proximity score attempts to verify the unsound relationship and ensure the building of a sound

model. Thus, it is necessary to understand the soundness of the process model.

Definition 7. Soundness

Soundness is considered as a correctness criterion of a process model (van der Aalst, 2011). A dependency graph is

sound if

a. Any nodes excluding an end node have at least an immediate successor and a valid sequence until an end node.

A valid sequence means a flow that follows the traceable event(s). This condition requires at least a node follows a

start node and ensures that the flow reaches the final state, i.e., end node. In other words, any activity that is not the

end node should have, at least, an outgoing flow for generating an immediate successor.

b. Any nodes excluding a start activity have at least an immediate predecessor and a valid sequence from a start

node.

A valid sequence means a flow that follows the traceable event(s). This condition requires a flow exist from any

nodes to the end node. In this case, any node that is not start node should have, at least, an incoming flow for

instantiating the immediate predecessors.

The two conditions enforce the model to reach the final state. In other words, the process model should follow a

mandatory completion flow (Trcka et al., 2009).

All the definitions above support the domain knowledge. The domain knowledge, either given prior to process

discovery or post-analysis, is formalized as follows.

Definition 8. Domain Knowledge (D)

Domain knowledge aims to retrieve any causalities; such knowledge falls into one of three categories: rules that are

both unexpected and actionable (UA), those that are unexpected but not actionable (UA), and rules that are

actionable but expected (AE). The adoption of these terms (Liu et al, 2000), which later will be called domain

knowledge, can be obtained either as a priori knowledge or post-analysis. Let xij be the decision variable of

dependency between two nodes, node i and j. Domain knowledge in the form of actionable rules affects the decision

of dependency between two nodes (xij) and is interpreted by means of graphs as follows.

15

• Mandatory causality. Node vi has mandatory causality with vj if vi is the immediate predecessor of vj. It is

denoted as MC, where MC ⊆{mcij = (vi,vj) | vi, vj ∈V } is the set of two vertices where vi ≺ vj; that is, vi is the

immediate predecessor of vj. (xij=1).

• Indifferent causality. Node vi has indifferent causality with vj if vj is not the immediate successor of vi. It is

denoted as IC, where IC ⊆{icij = (vi,vj) | vi, vj ∈V } is the set of two vertices where vi ⊀ vj; that is, vi is not the

immediate predecessor of vj. (xij=0).

• Concurrent activities. Node vi has interleaving causality with vj if vi and vj are concurrent activities. It is

denoted as CA, where CA ⊆ {caij = (vi,vj) | vi, vj ∈ V} is the set of two nodes where caij indicates that vi appears

before vj in one execution and that vi appears after vj in the other execution. Thus, there is no relation between

the two vertices vi and vj such as xij=0 and xji=0.

• Designated Start. Designated start (ds) is an activity assigned as a start activity. Hence, ds = vi | vi = v0 ∧ vi,v0

∈V.

• Designated End. Designated end (de) is an activity assigned as an end activity. Hence, de = vi | vi = vN ∧ vi,vN

∈V.

Since the concept of proximity includes both traceable and direct events, all events will have a positive value of

proximity score. The relevant behaviors are explicitly extracted from the logs. However, the irrelevant behaviors,

which can only be derived from users’ knowledge, can be considered to be relevant when the proximity score is

high, for example, when there are more traceable events than direct events. Hence, it is necessary to prioritize the

relevant behaviors by assigning benefit values. Since the irrelevant behaviors are less important than the relevant

behaviors, they should be assigned a penalty value. Here, we introduce benefit and penalty as a trade-off score

applied to obtain the required process model.

Definition 9. Benefit and Penalty

Benefit (Bij) and penalty (Pij) score are introduced to represent the priority in the selection of extra behavior. The

score to select the best direct event is necessary in two ways. First, it needs to choose the best direct event with the

highest proximity (benefit). Second, it is required not to choose irrelevant behaviors (i.e. there is no direct event

relation in the log), by imposing a penalty.

The user can choose the parallel, causality or not-related relationship according to their knowledge. Hence, when

the given constraints generate an unsound process model, measures indicating the best relations are needed. If there

exists a link between events i and j in the event log, the maximum benefit value of PSij and the 0 penalty value need

to be assigned (since it is our intention to create the process model). On the other hand, we assign a 0 benefit value

and the maximum penalty value to minimize the number of event relations that do not exist in the link. The initial

benefit and the penalty values for all relationships are shown in Eqs. (4) and (5), respectively:

(4) ,
max() , 0

0 , 0

ij i j iji j
ij

i j ij

PS v v F
B

v v F

ì " Ù >ï= í
" Ù =ïî

16

(5).

For example, the possible maximum value of PS is 0.99. Suppose the maximum of PS is 0.99. The value of Bij

equals to 0.99 when Fij > 0 or the value of Pij equals to 0.99 when Fij = 0.

By using soundness, it attempts to keep the dependency in G from any unknown relations from domain knowledge.

It means, if an edge is removed according to domain knowledge, then there is a procedure – the one that is

responsible for finding another best edge – to keep the soundness and compensate for the removed edge. To

formalize the hidden relationship because of edge removal, we adopt integer linear programming that will be

explained in the next section.

4.2. Integer Linear Programming

This section describe the model of integer linear programming due to the existing of domain knowledge (D) which

can lead to unsoundness problem, e.g., some intermediate nodes have no either predecessors or successors. The

objective function attempts to find the maximum value of proximity to mine a dependency graph from a log (Eq. 6).

If event j is the immediate successor of events i, it is obvious that the value of Fij is greater than 0 (Fij > 0, Bij > 0,

Pij=0). If there is no adjacent relation between events i and j, there are two options.

l First, for event i, event j is not immediate successor but it is a traceable event. Hence, the proximity score can

have a greater value than 0 (PSij >0, Bij =0, Pij >0), since the two activities are reachable in the event logs.

l Second, for event i, event j is neither immediate successor nor traceable event. Hence, there is no proximity

score (PSij =0, Bij =0, Pij >0), which means that there is no traceable event in the logs; therefore, the maximum

proximity score for all events will be returned as a penalty.

In order to maximize W, the value of Pij should be minimized. To discover a process model with the minimum

penalty (Pij=0), that model should contain only nodes in causal matrix (Fij >0). The value of the penalty will be

equal to maxij (PSij) when a behavior contradicts the existing log behavior, that is, when event j is not the immediate

successor of event i such that Fij=0. In the case that Pij is equal to maxij (PSij), Bij is equal to 0.

(6)

s.t.

 (7)

 (8)

å -++=
ji

ijijijijij xPBPSFW
,

*)(max

CAvvCAvvxx ijjijiij Î"Î"==),(,),(0,0

ICvvx jiij Î"=),(0

,
max() , 0

0 , 0

ij i j iji j
ij

i j ij

PS v v F
P

v v F

ì " Ù =ï= í
" Ù >ïî

17

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

Constraints (7) – (10) are relations obtained by domain experts. Constraints (7) dictates that the relations

between vertices vi and vj equal 0 if two events are considered as being in parallel relation. Constraint (8) requires

that the relations between vertices vi and vj equal 0 if two events are considered to be not-related. Constraint (9)

specifies that the relations between vertices vi and vj equal 1 if two events are considered as having the causal

relation.

Constraints (10) and (11) designate the end and start activities, respectively. Constraint (10) indicates that the

relations between vertices vi and vj should be equal to 0 for any vertex vi that is a designated end activity (vi = de).

Constraint (11) indicates that the relations between vertices vi and vj should equal 0 for any vertices vi that are a

designated start activity (vi = ds).

In order to obtain a sound process model, it is necessary to build constraints that satisfy the soundness property

defined in definition 7. For verification of the soundness of a process model (a valid sequence from a start activity to

an end activity), there should be a constraint enforcing a connection between vertices that are neither start nor end

activities. Constraint (12) dictates that the relations between vertices vi and vj be greater than or equal to 1 for any

vertices vi that are not an end activity (vi ≠ vN) or a designated end activity (vi ≠ de). Meanwhile, constraint (13)

requires that the relations between vertices vi and vj should be greater than or equal to 1 for any vertices vi that are

not a start activity (vi ≠ v0) or a designated start activity (vi ≠ ds). A decision variable (xij) in Eq. (14) is equal to 1 if

vertex vi immediately precedes vertex vj, where (vi ,vj) Î ED; otherwise 0.

To illustrate the mathematical model, let consider two traces as follows, <A, B, C, D, E>4, <A, C, B, D, E>3.

Without identifying the domain knowledge, there are two restrictions. First, there should be at least a link for all

nodes when the immediate predecessor node is not an end node. That is, for each xij such that i ≠E generates

constraints as follows:

xAA + xAB + xAC + xAD + xAE ≥ 1

xBA + xBB + xBC + xBD + xBE	≥ 1

xCA + xCB + xCC + xCD + xCE	≥ 1

xDA + xDB + xDC + xDD + xDE	≥ 1

MCvvx jiij Î"=),(1

devvvx iNi
j

ij ¹"Ù¹"³å 1

dsvvvx ii
j

ji ¹"Ù¹"³å 01

0ij i
j
x v de= =å

0ji i
j
x v ds= =å

{0,1}, (,)ij i jx v v EDÎ " Î

18

Second, there should be at least a link for all nodes when the immediate successor node is not a start node. That

is, for each xij such that j ≠A

xAB + xBB + xCB + xDB + xEB ≥ 1

xAC + xBC + xCC + xDC + xEC	≥ 1

xAD + xBD + xCD + xDD + xED	≥ 1

xAE + xBE + xCE + xDE + xEE	≥ 1

For each variable, it should be 0 or 1 value. In regard to the objective, it uses the method proposed in this study.

For example, the relation between A and B produces value 5.4875 which is obtained from the summation of 4, 0.8,

and 0.6875 that represents causal relation, benefit and proximity score, respectively.

4.3. Constructing a process model from ILP

The role of domain expert for imposing the constraints of ILP is important. By referring to the traces in Table 2,

it is obvious that the low frequency behavior, for example <A, F>9, is unexpected on the model. Domain expert can

impose the constraint by choosing the relationship of mandatory causality for the behavior. The model, discovered

from the event log, will include the imposed behavior even though it is insignificant due to the frequency. It is also

applicable to restrict the relatively frequent behavior, for example <A, B, I, I>150, that contains a loop of event I for

being discovered in the model by imposing a constraint of indifferent causality. By choosing such constraint, the

model is updated by excluding the loop. One of the challenge of actionable process discovery is to discover implicit

behavior when existing behaviors are not actionable while the activity is not either a start or end activity. For

example, domain expert claim that activity “Shuffling” should follow “Remarshalling Stack” since the activity

“Remarshalling Stack” could not immediately end without any further action. Hence, domain expert imposes a

constraint of indifferent causality on “RemarshallingStack” to “End” and a constraint of mandatory causality on

“Remarshalling Stack” to “Shuffling”.

Based on the restrictions obtained from the domain knowledge, a dependency graph can be automatically augmented

with proximity information, called as causality assignment. A causality assignment based on proximity embed in the

ILP and plays a pivotal role in discovering a sound process model. The important part is the propagation of the

causality that a particular causality assignment usually constraints the assignment of set of other causalities.

Constraint 12 and 13 are the central for causality assignment. Whenever a node which is not either a start or an end

activity, it should have a causal relation from a start activity and to an end activity. For example, setting two nodes

as indifferent causality leads to unsound process model and forces to determine other nodes as either direct

predecessor or direct successor; or setting the node as designated start (designated end) causes every other

predecessors (other successors) remain with no causality and assigns other nodes for satisfying soundness. The

soundness properties guarantee the dependency graph hold the workflow property. However, it is less guarantee that

the mined model has high quality since it is a kind of a trade-off between technical interestingness and business

19

interestingness. This study investigates the causality assignment after a domain knowledge is imposed. Theorem

were built and the proof can be found in the appendix of this paper.

Theorem 1. Let G = <V, ED> be a sound graph and let L be a complete event log. For any mcij ∈MC	 | vi, vj ∈V ∧

(vi, vj) ∈ED	implies soundness.	

1. If	∃k edk
ij ≠ ∅, then a graph G with domain knowledge mcij is sound.

2. If	∀k edk
ij = ∅, then a graph G with domain knowledge mcij is sound.

3. If	∀k edk
ii = ∅, then a graph G with domain knowledge mcii is sound.

A domain knowledge of mcij indicates that an imposed constraint by domain expert is a mandatary relation between

the two nodes. If the node vi is not an end activity, there should be, at least one, successor node until an end activity.

If there is no prior relation (vi, vj) ∈ED, the additional relation from vi to node vj that is not a start activity keep the

soundness property and impose an addition constraint of ∃k edkij ≠ ∅. Unless vi is an end activity and vj is a start

activity, the dependency graph remains sound.

Fragment of traces in Table 2 can be used to illustrate the theorem. Suppose there is no case of traces such as <A –

F>. Since it is unexpected but actionable, domain expert imposes a mandatory constraint to relate A and F. Since the

proximity between A and F can be derived from other traces such as <A – B – E – F>800, there exist such a high

probability that these two nodes are related.

Theorem 2. Let G = <V, ED> be a sound graph and let L be a complete event log. For any icij ∈IC	 | vi, vj ∈V	

implies soundness.

Based on domain expert, the fragment log in Table 2 contains unexpected relationship such as < … I – I …>. This

self-loop is actually unavoidable in the real world process. However, domain expert can impose a constraint of

indifferent causality to deselect the causal relations. By the definition of edge, there should be an immediate

predecessor (or immediate successor) of two nodes. Hence, unsound process model could not happen when the two

activities are disconnected. Instead, the causality assignment attempts to find any other nodes that either precede I or

succeed I. In other word, there exists a possible relation for both predecessor and successor of I. This situation holds

for any edges.

Theorem 3. Let G = <V, ED> be a sound graph and let L be a complete event log. For any caij ∈CA	 | vi, vj ∈V

implies soundness.

The fragment log in Table 2 contains no concurrent activities. Suppose, two nodes G and H have paths < … G, H, G,

H, … >. The low frequency of those nodes does not hinder the discovery process. The elimination of two edges, for

example <…G – H…> and < … H – G…> are still able to mine a sound process model when there are another

predecessor of G or H and there are another successor of G and H. For example, B and D could be the candidate of

20

predecessor of G while C and E are the candidate of successor of <… G – H …>. Hence, the mined model holds the

soundness.

Theorem 4. Let G = <V, ED> be a sound graph and let L be a complete event log. For any vj ∈V,

1. If vi ≠ v0 and vi = ds and there exists (vj ,vi) ∈ ED, then G’ is an improved sound graph of G / {(vj, vi) | ∀j vj

∧(vj ,vi) ∈ ED}

2. If vi = v0 and vi = ds and there exists (vj ,vi) ∈ ED, then G’ is an improved sound graph of G / {(vj, vi) | ∀j vj

∧(vj ,vi) ∈ ED}

Based on the fragment log in Table 2, there are several possible start nodes. For example, a set of start activities

comprise of {A, D, G}. Since G follows H and is followed by B, the model will show node G as an intermediary

node. Intermediary node in this study is a node that has predecessor and successor. Suppose, the domain expert

imposes a constraint to designate node G as a start activity. There could be a consideration to relate G with A since

there is a proximity score between A and G. Although the proximity score exists, the intention to choose G as

designated start activity enforces no predecessor of G and there should be a successor of G (i.e., node H). Therefore,

the mined model is sound.

Theorem 5. Let G = <V, ED> be a sound graph and let L be a complete event log. For any vi ∈V,

1. If vj ≠ vN and vj = de and there exists (vj ,vi) ∈ ED, then G’ is an improved sound graph of G / {(vj, vi) | ∀i vi

∧(vj ,vi) ∈ ED}

2. If vj = vN and vj = de and there exists (vj ,vi) ∈ ED, then G’ is an improved sound graph of G / {(vj, vi) | ∀i vi

∧(vj ,vi) ∈ ED}

Based on the fragment log in Table 2, there are several possible end activities;{C, I, F, H}. Since there exists both

predecessor and successor of H, node H is considered as an intermediary node. Suppose, the domain expert imposes

a constraint to designate node H as an end activity. Causality assignment can relate H with F since there is a

proximity score between H and F. Although the proximity score exists, the intention to choose H as designated end

activity enforces no successor of H and there should be a predecessor of H (i.e., node G). Therefore, the mined

model is sound.

Domain experts play an important role to build the domain knowledge (constraints). However, domain experts

may not be familiar with process analysis. Since the main challenge of process mining is to automatically discover

process model from event log, it is a time-consuming task when the domain experts associate with exaggerated

constraints. In addition, since it needs the involvement of domain expert, it is difficult to apply in any situations.

Therefore, this study attempts to propose an approach to automatically mine a process model by reusing the ILP and

excluding the domain knowledge. Instead, we use expert’s belief that refers to a threshold value. This threshold,

21

which later called by belief threshold, applies to ILP and manipulate the cost value in objective function. A high

belief threshold aims to discover a model which covers high proximity score. Naturally, this approach should be

comparable with the result of integer linear programming. However, actionable process discovery aims to discover a

model that can represent the business interestingness. In this case, the business interestingness refers to the

actionable aspects such as actionability in the real world. Instead of finding the optimality of the process model, this

study focuses on the precision of the model with the domain knowledge.

5. Implementation and Evaluation

This section describes the implementation of our approach. It also includes a case study in the domain of port

logistics. Additionally, evaluation results, both quantitative and qualitative, are analyzed.

5.1. Dataset introduction for experiment

A case study of a port logistics process of landside transport was conducted. In process mining, the common meta

model, referred to as the event type, usually begins with schedule, proceeds to start, and ends with complete (van

Dongen and van der Aalst, 2005). However, the current event data-recording technology for ports is dependent on

human operators, who sometimes fail, due for example to high workloads, to represent the real time, which is to say

that they record only the completion of an activity without recording the start event. Thus, the port's expert might

decide to analyze event logs using schedule and complete events that can have behavior differences compared with a

common meta model derived from existing mining techniques. In this event log, the event type schedule means that

a user receives an inquiry on that activity and schedules the task in the system.

As aforementioned with regard to a port logistics process, this study used nine main activities. The dataset was

comprised of two event types, schedule and complete. For better representation, the experiments were conducted

based on two datasets. The first dataset included only the complete event type and the second had both schedule and

complete event types. Table 3 illustrates a fragment of an event log based on the two event types.

Table 3. Fragment of event log based on two event types

CaseID Activity Timestamp Event Type

1 QuayJobDischarge 2012-10-23 08:09:35 schedule

1 QuayJobDischarge 2012-10-23 11:10:25 complete

1 YardJobDischarge 2012-10-23 11:45:10 schedule

1 YardJobDischarge 2012-10-23 12:13:08 complete

1 YardJobGateOut 2012-10-23 14:03:51 schedule

1 YardJobGateOut 2012-10-24 10:11:47 complete

2 QuayJobDischarge 2012-10-23 08:12:41 schedule

2 QuayJobDischarge 2012-10-23 10:31:54 complete

22

2 YardJobDischarge 2012-10-23 12:28:41 schedule

2 YardJobDischarge 2012-10-23 15:48:17 complete

3 RemarshallingPickUp 2012-10-23 14:05:38 schedule

3 RemarshallingPickUp 2012-10-24 06:27:15 complete

3 RemarshallingStack 2012-10-24 07:00:20 schedule

3 RemarshallingStack 2012-10-24 07:42:19 complete

5.2 Implementation

Proximity miner was implemented in the ProM† process mining framework and demonstrated using port logistics

data. Each event, which consists of two types, was identified by a key concatenated with the activity name and the

event type. The mathematical model was implemented using the commercial software LINGO 11.0 and an open-

source tool, LpSolve 5.5.0‡. The software was run on a Core i7 860 2.80 GHz, 8 GB RAM desktop computer.

This approach has been applied to a real-world process mining application for mining of actionable process models.

This is to mine the discovered process patterns in port logistics. The word actionable indicates that the flow patterns

should not only satisfy technical significance based on used process mining methods, i.e. conformance checking, but

also should have potential in the physical world when they are executed in the field.

Figure 2 shows proximity miner’s initial page, which includes the sets of constraints. After the constraints are set,

the graph result will be shown as in Figure 4.

The experiment was run from two scenarios. First, the domain expert personally sets the specific constraints relevant

to the application. This task consumes a lot of time, particularly when the number of activities is large. Second, the

proposed approach affords users to adjust some minimum threshold (or confidence of expert’s belief) for retrieving

the actionable model. While the former guarantee soundness, the latter provides functions to show only the rules that

are not expected or actionable based on the designated minimum threshold.

The dataset used in this study was a month’s worth of container data in 2012: 66,962 cases and 295,379 events. An

artificial start and an artificial end were added to the dataset for the purposes of the study.

† www.processmining.org
‡ https://sourceforge.net/projects/proxi-miner/

Figure 2. First page of proximity miner

23

Figure 3 (a) shows all of the relations between nodes including the two event types, schedule and complete. Initially,

our approach does not exclude infrequent traces, unless they violate imposed constraints. The specific constraints

relevant to the application can either be obtained by interviewing domain experts or set personally by domain

experts. A domain expert suggests to set some constraints such as mandatory causality, which is denoted in the blue

line of Figure 3 (a), and indifferent causality, which is denoted as cross icon in the figure. The choice of constraints

used for determining actionable behaviors (insertion or deletion of relations) heavily affects the mined process

models (Figure 3 (b)). Therefore, experimenting with an incremental number of constraints can be a helpful way to

identify the constraint set that leads to the best results.

To simplify the result of the mined actionable process model without user intervention, the experiment used both the

complete event type alone and schedule and complete together. Using dataset with complete event type alone, the

initial result with all causal relations between nodes is shown in Figure 4 (a). The constructed process model in the

figure was the result of our approach using a minimum threshold of 0.5. The red line indicates that the causal

relations are not expected and not actionable to the degree of 0.5. By exploiting the result, the mined process model

without those rules is shown in Figure 4 (b). Another approach to obtain the result is to allow domain experts to set

the specific constraints relevant to the applications. The choice of constraints used for determining actionable

behaviors can affect the mined process models. In other words, experimenting with an incremental number of

constraints can be a helpful means of identifying the constraint set that leads to the best results.

(a). The result based on all events (b). The result based on constraints

Figure 3. (a). Result of Proximity Miner based on all events relations and (b) the result after considering constraints

24

The discovered process model is more complex when it contains two event types. For example, there can be some

flows in which an activity with event type schedule is followed by another activity of event type schedule. This study

focuses only on discovering an actionable process model and leaves the semantics due to the existence of two event

types for future work. The representation of the categorization for event logs that contain two event types (without

artificial start and artificial end) is shown in Figure 5. While Figure 5 (a) shows the overall causal relations in the

event log, Figure 5 (b) demonstrates the exclusion of the actionable relations with the threshold of 0.5. Thus, this

approach also can be considered an interactive tool for finding an actionable process model. Remaining questions

about fitness and behavioral appropriateness are discussed in the next section.

(a). The result with minimum threshold = 0.5 (b). The mined result excluding the non-actionable relations

Figure 4. (a). Result of Proximity Miner with all relations and (b) the result excluding the non-actionable relations

25

(a). Categorization of actionable models with minimum threshold 0.5

(b). The mined result with categorization excluding non-actionable relations (threshold 0.5)

Figure 5. (a). Result of Proximity Miner with all relations of two event types and (b) the result excluding the non-
actionable relations

 5.3 Quantitative Evaluation

There are two measures used in this study. First, we applied measures related to process mining. Second, subjective

interestingness measures are introduced to quantify the fitness of actionable knowledge over process model.

5.3.1. Measures on process mining

In this study, we applied measures from a previous work: fitness and behavioral appropriateness (Rozinat et al.

2007). Fitness (f) is a metric that is obtained by determining whether each (grouped) sequence in the event log can

be reproduced by the generative model. It is often referred to as sequence replay. By using a generative model of

Petri Net, the initial value of f at the start of sequence replay is a value of one. Behavioral Appropriateness (ABA) is

a metric that is obtained by exploration of the state space of a Petri Net and by comparison of the different types of

following and precedence relationships that exist in the state space with the different types of following and

precedence relationships that exist in the event log. This proportion is defined as the number of following and

precedence relationships that Petri Net has in common with the event log vis-a-vis the number of relationships that

it, Petri Net, allowed. Degree Model Flexibility (DMF), as a part of ABA, is a metric that allows for flexibility in the

model according to the activity relations derived from the log. It equals 0 for a model that only allows for a

particular sequence of steps, or 1 for the "flower" model allowing for arbitrary execution of the contained steps.

Those measures have been provided in ProM 5.2 tool and were utilized for this study. For further details, reader can

refer to Rozinat et al. 2007.

26

Data experiments (as shown in Table 4) were performed to analyze the performance of proximity miner. The

results show that proximity miner runs slower when data includes a lot of loop behavior. In the process mining

setting, the running times of solution approaches do not usually represent a major issue (as algorithms are applied

offline, i.e. during the (re)-design phase). Since the main focus of this study was on generating a better quality of

mining result, i.e. an actionable process model, we set aside the performance problem for future work.

Table 4. Summary of Data of Port Logistics Process with time performance using proximity miner

Dataset Cases Events Elapsed Time Note

Container 14,481 65,307 9 sec 302 ms -

Vessel 22 15,787 1 min 50 sec High frequency of loops

Truck 18 21,270 1 min 23 sec High frequency of loops

Block 7624 25580 2 sec 267 ms -

QuayCrane 8 16211 1 min 47 sec High frequency of loops

YardCrane 24 56975 8 min 30 sec High frequency of loops

The experiment results for a real log of a logistics process based on a container (see Table 4 for the container

data) are shown in Table 5. Since the measure run based on Petri Net, the proposed result was converted from

dependency graph to Heuristic Net and, finally, reutilized the conversion tool from Heuristic Net to Petri Net.

Afterward, the converted result was evaluated using the existing conformance checker tool. By applying a number

of constraints from 0 to 30 at intervals of 5, the f-measure (fitness measure), ABA and DMF value results were

obtained. The f-measure and DMF results decreased slightly when the constraints were larger. Since f-measure is a

token (sequence) replay of a mined model from the event log, it is certain that it falls when the constraint is larger.

As for DMF, larger constraints effect a slight increment in the measure with constraints equal to 10 and 15.

Afterward, it was shown as the better model for representing the flexibility of sequences. The ABA measure

indicated that the behavior of the mined model was gradually increasing when the constraint was larger. This means

that the process model has a high proportion of following and precedence relationships in the event log. For the

purposes of a comparison, the experiment also was conducted using container data in alpha miner and heuristic

miner (see Table 6). It should be noted that both alpha miner and heuristic miner are prominent discovery tools of

process mining. In addition, in the user’s perspective, both mining tools can represent the extracted patterns. This

experiments exclude comparison analysis with other existing tools, i.e., AGNEs and precedence constraints, due to

inaccesibility to those approaches.

The experiment results based on f-measure has led to the tool’s effectiveness with regard to business

interestingness issue in twofold. First, it identifies the effectiveness of proximity miner in term of business

interestingness, as shown in Table 5. As the value one means all sequences in the event logs can be produced in the

generative model, the decrement values of f-measures due to the increment of constraints indicate that generated

constraints by the users satisfy the sequences in the event logs. In other words, the business interestingness is well-

represented when the value is nearly one. Second, it determines the effectiveness of the proposed approach in

comparison to some prominent tools, as shown in Table 6. Heuristics miner, the prominent tool in process mining,

27

shows a high value of f-measure. It means heuristics miner can result a without-user-intervention process model

which is almost the same with the proximity miner in term of business interestingness. Since there is no guarantee

that the model generated by heuristics miner is an actionable model, which includes user’s intervention, thus user

have no confidence on the applicability of such model. Hence, this paper also conduct qualitative study for verifying

the result based on the domain expert.
Table 5. Experiment results from real log (full log) for proximity miner

 Number of constraints

Measures 0 5 10 15 20 25 30

f-measure 1.00 0.99 0.99 0.99 0.99 0.99 0.99

ABA 0.61 0.63 0.63 0.64 0.68 0.69 0.69

DMF 0.62 0.57 0.70 0.71 0.67 0.69 0.56

Time (sec) 16.615 16.442 14.533 14.583 15.584 15.367 16.175

Table 6. Comparison of experiment results of real logs with other mining techniques

 Mining Techniques

Measures Alpha miner Alpha+ Heuristic miner Genetic miner Proximity miner

f-measure 0.82 0.82 0.98 0.98 0.99

ABA 0.77 0.74 0.82 0.90 0.69

DMF 0.38 0.37 0.47 0.38 0.56

Time (sec) 2.961 1.956 4.792 252,001 16.175

5.3.2. Measure of interestingness

This section discusses the measure interestingness. The interestingness is the degree of a discovered process model’s

compliance with domain knowledge. High interestingness means that the discovered process model has many

matching relations with domain knowledge. On the other hand, low interestingness means that there is little

correlation between the discovered process model and domain knowledge.

In this study, we utilized subjective interestingness measures to indicate the actionability of the discovered model in

comparison to domain knowledge. The domain knowledge is obtained from domain experts who have long

experience in the field. The domain knowledge will be classified into the three aforementioned categories: UA, UA,

and AE. For this study, the domain expert provides the domain knowledge pertaining to a specific port. Note that

these relations were established based on the expert’s experience in a specific port and could be different from other

ports’ characteristics. The relations (i.e. the interestingness based on domain knowledge) are illustrated in Figure 6.

 QD YD YI YO YL QL RP RS S

QD UA AE UA UA UA UA UA UA

YD UA AE AE UA AE AE

YI UA AE AE UA AE AE

YO UA UA

28

YL UA AE

QL UA UA UA

RP UA UA UA AE

RS AE AE AE

S AE AE AE UA

Figure 6. Interestingness based on domain knowledge (refer to Table 1 for the activity description)

Figure 6 illustrates the domain knowledge in the form of a matrix. Any relation with the text ’AE’ represent a

normal process as well as an actionable flow according to the expert’s knowledge. This is presented as green-

colored cells. Any relation in UA (in yellow-colored cells) are considered possible relations (i.e., unexpected but

actionable). This means that a real-world system can have an actionable flow even though it is unexpected. For

example, QD is possible to be the immediate predecessor of YL for some reasons (e.g., distance and schedule). This

flow can happen when a vessel is at a berth nearby the discharged location. In this sense, the quay crane (QC)

grounds a container near the crane, instead of in the yard, and later moves it somewhere else or loads it directly onto

the vessel. The relations with the text UA (red-colored cells) are not physically possible. In other words, the flow is

unexpected and not actionable in the real world. For example, remarshalling pickup activity (RP) should not be

followed by yard crane (YC) loading (YL), since it needs first to be grounded. The red-colored cells have two

meanings: a relation that can appear in the log due to minor execution in the field, or a relation that has never been

detected from the log. The former is illustrated by the cells with the text ”UA” and the latter is represented by the

red-colored-blank cells.

The process on building the constraints by domain expert is error-prone, in particular, when the domain knowledge

is complex. Here, we also propose a process discovery approach using ILP based on belief threshold. This approach

attempts to discover a process model based on the designated belief threshold value. The threshold is a value

between 0 and 1 which represent the belief of users. The belief threshold in this approach refer to the proximity

score. It means, the proximity score which is higher than the belief threshold will be shown as the mined model.

Otherwise, the ILP will ensure to choose relevant edges to guarantee the soundness while maximizing the objective

function. However, unsound model occur when the belief threshold is high (e.g., more than 0.6) due to the existence

of loop. Therefore, to tackle such problems, we develop additional function (i.e., MinimalSoundness) to produce a

sound process model. The detailed procedure is as follows.

29

The line 1-2 are variables declarations for the algorithm. In lines 3 - 21, it runs for each causal relations. When there

exist a causal relation between two nodes, the incoming and outgoing nodes should be stored including the

respective frequency. Line 4 – 12 and 13 – 21 denote a procedure to store the incoming nodes and outgoing nodes,

respectively. The procedure finds the maximum frequency among existing edges and store the most frequent causal

relations for each nodes. Eventually, the variable incomingNode and outgoingNode are used to produce a sound

process model. To measure the effectiveness of this approach, this study explored the interestingness measure using

precision and recall.

Suppose that D is the set of nodal relations representing domain knowledge and that G is a graph representing the

discovered process model. The precision is the ratio of the number of correct relations discovered by an approach to

the total number of relations returned by the algorithm. The recall is the ratio of the number of correct relations

returned by an approach to the total number of relations in the domain knowledge. Thus, precision and recall can be

formulized as follows in Eqs. (15) and (16).

(15)

(16)

Table 7. Dataset for precision and recall experiment

Dataset Cases Events
1 4084 15897

G
GD

precision
Ç

=

D
GD

recall
Ç

=

MinimalSoundness(CausalRelation F)
1 Matrix F ß F;// it is a matrix of causal relation of node i and j
2 Map<key, value> incomingNode, incomingFreq, outgoingNode, outgoingFreq;

3 foreach xij ∈ F do{
4 if (incomingNode(j) exist){ //if there exist another incoming Node
5 if (freq(xij) < incomingFreq(j)){ //freq(xij) = frequency of xij
6 incomingNode(j) = i; //update the incoming Node
7 incomingFreq(j) = freq(xij);
8 }}
9 else { //add new incoming Node
10 incomingNode(j) = i;
11 incomingFreq(j) = freq(xij);
12 }
13 if (outgoingNode(i) exist){ //if there exist another outgoing Node
14 if (freq(xij) < outgoingFreq(i)){
15 outgoingNode(i) = j; //update the outgoing Node
16 outgoingFreq(i) = freq(xij);
17 }}
18 else { //add new outgoing Node
19 outgoingNode(i) = j;
20 outgoingFreq(i) = freq(xij);
21 }}

30

2 9980 40194
3 21529 91101
4 33559 146249
5 39494 173108
6 51870 229368
7 66962 295379

(a) F-measure

(b) ABA

(c) Precision

(d) Recall

Figure 7. Measures based on (a) F-Measure, (b) ABA, (c) Precision and (d) Recall using Data Container

The experiment utilized the data set represented in Table 7. The dataset is the data of the container flow at the port

terminal, and was partitioned into seven fragments with gradually increasing numbers of cases and events. As a

matter of fact, two partitioned datasets can have different graph patterns due to size variability. Thus, another

measurement parameter, for example threshold, might need to be considered.

Finding the best belief threshold value is a general issue in the domain of data retrieval. By definition, a belief

threshold is a ratio number by which to automatically prune the result based on the proximity score. Threshold

adjustment determines the precision and recall. Thus, the present experiment was performed on the dataset with

some reasonable threshold values such as 0, 0.5, 0.6, 0.7 and 0.8. A threshold value of 0 indicates that the approach

discovered a process model as it is represented in the event log, which is to say, including noise. With a threshold

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

F-
m

ea
su

re

PM

AM

AM++

HM

GM
0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

A
BA

PM

AM

AM++

HM

GM

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Pr
ec

is
io

n

PM (0.5)

PM (0.6)

PM (0.7)

PM (0.8)

HM

PM (0)
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

R
ec

al
l

PM (0.5)

PM (0.6)

PM (0.7)

PM (0.8)

HM

PM (0)

31

value greater than 0, the graph will be pruned. A higher threshold value means that there is a higher probability of

obtaining high precision. However, a higher precision value might be correlated with a lower recall value.

Note that this experiment was conducted by comparison with only heuristics miner (HM) due to two reasons. First,

the F-measure of Proximity Miner and Heuristic Miner show slightly different (Table 6). Although Genetic Miner

also shows its superiority, the high execution time is not much expected by users. Second, some measures such as F-

Measure, ABA, and DMF can evaluate the technical interestingness. Figure 7 (a) and Figure 7 (b) show the

experiment results of F-Measure and ABA. Note that those two measures are sufficient to show the technical

interestingness of the approaches. In term of business interestingness (or actionable model) which refers to domain

knowledge, we measure precision and recall to measure the effectiveness of the approach.

Based on Figure 7 (c), Proximity Miner (PM) is superior to Heuristic Miner (HM) in precision. It shows that the

precision of HM lies in between 0.6 and 0.7 meanwhile PM outperforms by showing the precision higher than HM

when the belief threshold is over 0.5. On the other hand, HM dominates PM in recall for a large dataset. For a small

dataset however, PM can provide high recall for the belief thresholds 0.5 and 0.6. Thus, PM is better than HM to

obtain an actionable process model from a small dataset.

5.4 Qualitative Evaluation

This study obtained an evaluation from a domain expert. Since the case study pertained to a logistics process, we

interviewed a domain expert working in the port logistics domain with regard to the mining result. For this study, the

business interestingness is instantiated in terms of subjective factors from technical and business sides.

As a domain expert should be familiar with process mining terminology, he was involved in the development of this

proposed algorithm, specifically by proposing some improvements to the existing techniques. The proximity miner

results were compared with the process mining techniques alpha miner, heuristics miner and fuzzy miner. The

proposed approach are not comparable to some other approaches, i.e. AGNEs and process discovery using

precedence constraints due to the following reasons. First, AGNEs has different perspectives on building the

constraints, i.e. it automatically generates negated events based on the event logs. Second, process discovery using

precedence constraints had limitations on loop behaviour which is one of the important behaviour in this approach.

In the evaluations, seven mined-model quality categories were applied: interpretability, loop detection, noise

detection, exactness, scalability, categorization, and time performance. The results are shown in Table 8.
Table 8. Qualitative evaluation results

 Category Measures AM HM FM PM

Process Model

Interpretability � � � �

Loop Detection � � � �

Noise Detection � � � �

Exactness � � � �

Scalability � � � �

Categorization � � � �

32

Performance Time Performance � � � �

�: Significant, �: Moderate, �: Insignificant. AM : Alpha Miner, HM : Heuristics Miner, FM : Fuzzy Miner, PM : Proximity Miner

Interpretability. Interpretability can be described as the possibility of interpreting the mined model for users.

Heuristics, fuzzy miner and proximity miner basically employ a graph to represent the process model. The domain

expert agreed that these techniques are easier to interpret than alpha miner, which uses Petri Net to represent the

result. Alpha mining was chosen because of the possibility to discover the control-flow. Heuristics and fuzzy mining

were chosen due to their robustness and expressiveness, respectively. As a result, each approach show the result

variability due to the mechanism used in the respective techniques. It should also be noted that the present study

used the default settings of existing mining techniques. As a consequence, the help of experts in constructing an

actionable model from the logs was necessary.

Loop Detection. Loop detection indicates the extent to which the approach can detect a simple loop, which is an

iterative activity. In the case of a port logistics process, there is much in the way simple loop behavior. Alpha miner

has a drawback in retrieving a simple loop from event logs (van der Aalst et al., 2004). As for the heuristics and

fuzzy miners, the parameter default settings can detect a simple loop from event logs; however, there are some cases

that cannot be accounted for, due to bad guesses on the parts of those algorithms (i.e. the disregard of infrequent

traces).

Noise Detection. Noise detection is intended to identify and show noise. Since alpha miner is a noise-free algorithm,

we disregarded it. Heuristics miner, contrastingly, is considered a robust discovery technique that can effectively

remove noise. Fuzzy miner can also mine a process model of a less-structured process by aggregating the infrequent

traces (i.e. noise) and abstracting the process flow. In fact, a user also needs to know the noise retrieved from event

logs. Proximity miner, instead of removing noise, includes all possible relations and shows the overall results for an

expert’s review and decision.

Exactness. Exactness is regarded as an evaluation technique to determine the exactitude to which the mined model

represents users’ knowledge. Alpha miner is an algorithm to detect activity instead of events; and since a log

includes the event types schedule and complete, alpha miner cannot precisely discover a mined model. It should be

noted that the results in alpha miner were obtained by disaggregating the events into the two nodes. Whereas

heuristics miner can discover the mined model similarly to users’ knowledge, it still has some problematic

behaviors: for example, it does not keep infrequent traces. Fuzzy miner abstracts the process based on the frequency,

but its sub-processing of the mining result is not accurate. The starting point of proximity miner, by contrast, is to

perceive all behaviors from the event log. Thus, an exact process model can be obtained by modifying it according

to users’ knowledge.

Scalability. Scalability is considered as an evaluation technique for measuring the degree to which an algorithm

satisfies users’ requirements. Heuristics miner has no function for modifying the event relations in the process

model. However, according to some designated parameters, a different mined model can be extracted. Both alpha

miner and fuzzy miner have additional functions for both inserting and deletion of event relations in the process

33

model; but with neither method is there any guarantee of a sound process model. Proximity miner guarantees the

soundness of a process model by activities to a set of constraints.

For example, heuristics miner is considered as the best alternative tool to discover the model. According to the

result, domain expert could not agree for a link. Hence, there should be a constraint from domain expert to limit the

flow, i.e., indifference causality, from certain activities. In case of both alpha miner and fuzzy miner, they will give

immediate result with no link. Proximity miner, thus, attempt to capture the soundness of the model and construct

another link, which is an alternative to be the successor of given activity, using ILP.

Categorization. Categorization is a method of merging events representing more than one event type. In the present

case study, each activity had two event types, schedule and complete. Alpha miner can merge those events, though it

cannot precisely show the relationship between two events. The other techniques, heuristics miner and fuzzy miner,

have limitations with respect to the categorization of two events. Proximity miner can categorize and merge event

types without disregard for their behavior (e.g. a schedule event type should precede a complete event type). Figure

8 displays a fragment of a port logistics process with merged events.

Time Performance. The existing techniques perform better than proximity miner in terms of time. The quantitative

results listed in Table 4 and Table 6 show that proximity miner suffers in its time performance when the data is

larger, as relates to its iterative or loop behavior.

Among all of the aforementioned factors, the expert deemed interpretability, exactness, scalability and

categorization the most important to process analysis in the port logistics domain. Since one of the purposes of

process model discovery is provision of a communication tool for other users or stakeholders, a generated process

model using a graph representation is more preferable. Exactness, scalability and categorization, moreover, also

enable the possibility of enhancing the discovered model based on the event relationships. Table 9 exists in a log

(QL = QuayJobLoad, and YL = YardJobLoad). According to the expert, all of the traces have three key relations, as

shown in the column of key relations. A key relationship between two events, for example, that of YL (schedule)

Figure 8. Example of fragment of port logistics process with merged events

34

and QL (schedule), is considered highly important, whereas other relations are considered less important. The traces

can be varied depending on the implementation; however, the key relationships remain the same. Thus, the

involvement of an expert in mining a better quality of the process model is necessary.

According to the interview with the domain expert, the results of the proposed approach show merits and demerits.

First, a merit is the ability to identify the extra behavior that is not included in an event log. Second, the proposed

approach can show either event-based or activity-based relations, since it is able to group the workflow model

elements according to the event type, i.e. schedule and complete. The demerit of the proposed approach is its

dependence on a 3rd library, which slows performance when data becomes large.
 Table 9. Key relations in port logistics based on process expert's opinion

Case Traces Key Relations (Expert’s involvement)
(1) QL (schedule) – YL (schedule) – YL (complete) – QL (complete) YL (schedule) – YL (complete)

YL (complete) – QL (complete)
QL (schedule) – QL (complete)

(2) YL (schedule) – QL (schedule) – YL (complete) – QL (complete)
(3) YL (schedule) – YL (complete) – QL (schedule) – QL (complete)

5.5 Discussion

This approach, as a part of process mining, aims to discover the as-is process based on event logs not only in the

port logistics domain but also in other fields that have process flows. The discovered process model can be used to

improve, for example by simulation, the as-is process. Process improvement, one of the hot topics in the field of

industrial engineering, should start by analyzing all of the aspects of the process including attributes (e.g., resources

that have been utilized) available in the log, and should then return the discovered model and relevant results for

further procedure. Hence, user’s interestingness for process improvement should be involved during the process to

discover the process model.

The present studies show an analysis to the relationships between technical interestingness and business

interestingness from the point of view of control-flow. The experiment results among several prominent process

discovery tools demonstrate the effectiveness of proximity miner and the potential use of using other similar logs

recorded in information systems. It has three salient features. First, discovered actionable process model represents a

match between the flow existing in the logs and the actionable rules set by the users. In other words, the fitness

measure can be regarded as an indicator to show that this approach represent a degree of subjective (user-driven)

measures. Second, discovered actionable process model can be a to-be process model for enhancement since the

support of interactivity mode would be a benefit for users who novice in process mining terminology. Finally,

although the main motivation behind our work is the business interestingness of event logs, the techniques presented

herein can also be applied to manufacturing domain such as semiconductor in which event logs are commonly

recorded by information systems and contains less structured process. For example, this approach could cover the

limitations of process mining as pointed at a case study of test processes in semiconductor (Rozinat et al., 2009).

It should be mentioned that there exist some limitations on the proposed approach. First, in this study, partial

information of port logistics process, i.e., activities and their occurring time stamps, has been used to support

actionable process model. Although this study reveals that this partial information is sufficient in discovering

35

actionable process model, there are even more complex analysis and evaluation tasks that need to be considered. As

a matter of fact, business decisions in any enterprises are commonly based on cost and quality, which is clearly

beyond the support of data used in this study. Second, the existing of loop as the sub-process can result an illogical

actionable process model. It means that when the users point out an indifference causality rule from an activity that

has only one and the only one flow to another activity as the loop, the former will link to end activity for enforcing

the soundness property. In this state, there should be additional properties to keep maintaining that kind of behavior.

In addition, the existing of loop causes unsound model when the user apply proximity miner approach with high

belief threshold. Third, AND control-flow was not included in the experiment, due to the nature of the event log

used in this study. Along with domain knowledge, a more significant event log that includes various behaviors will

be necessary to comprehensively prove the utility of this approach. Fourth, although this approach guarantees to

result a sound actionable process model, it still remains performance issues with regard to execution time when the

activity numbers becomes large. Moreover, the complexity of actionable rules increases when the number of event

types and the activity numbers are also increased. These issues will be addressed for future work.

6. Conclusions

Process discovery is a technique by which a process model can be constructed from the event logs of information

systems. The current process mining techniques, however, have limitations in representing the actionable knowledge,

i.e., actionable process model, based on domain knowledge.

This study formulated a method by which domain experts can be involved in model discovery. The proposed

algorithm, known as proximity miner, has been developed to utilize users’ knowledge in constructing an actionable

process model. Additionally, it offers five process mining advantages. First, it introduces proximity score as a

method for finding extra behaviors as potential direct following (adjacent) events when the mined model is not

sound. Second, the proposed proximity score both resolves the soundness problems of previous approaches and

enhances those approaches. Third, the result can be used to simplify the model by categorizing the event types, or in

other words, by merging them according to activity. Fourth, this approach provides an interactive mode for users to

determine the actionable rules. Fifth and finally, it is a useful tool for generating an actionable process model based

on the knowledge of domain experts that does not require either any effort in drawing from scratch or back-and-

forth cycle procedure between filtering and mining tasks. It was demonstrated in ProM, showing its usefulness in the

port logistics domain.

There remain some issues for future work. First, the mined model based on users’ knowledge is very subjective,

to the extent that the knowledge brought to bear is only that of domain experts. Thus, it requires measurement of the

quality of the mined model based on additional parameters. With a port logistics process for example, the common

principles among ports should be followed. Second, the loop behavior can cause sub-clustering in a process model,

which is unsound. Third, AND behavior should be justified with relevant real log. Finally, it requires a method, for

example a heuristic approach with users’ interventions, to reduce the computational time. These outstanding issues

will be considered in our future work.

36

Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education, Science and Technology (No. 2011-0010561 and 2013R1A1A2063316). An earlier,

abridged version of this paper has been presented at the 1st International Conference on AP-BPM in Beijing, August 2013.

References

1. Barba, I., Weber, B., Valle, C.D. & Jimenez-Ramirez, A. (2013). User recommendations for the optimized execution of

business processes. Data & Knowledge Engineering, 86: p. 61-84.

2. Bergenthum, R., Desel, J., Lorenz, R., & Mauser, S. (2007). Process Mining based on regions of languages. in BPM 2007.

LNCS 4714: Brisbane, Australia. p. 375-383.

3. Cho, M., Song, M. & Yoo, S. (2015). A systematic methodology for outpatient process analysis based on process mining.

International Journal of Industrial Engineering: Theory, Applications, and Practices, 22(4): p. 480-493.

4. Goedertier, S., Martens, D., Vanthienen, J. & Baesens, B. (2009). Robust Process Discovery with Artificial Negative Events.

Journal of Machine Learning Research, 10: p. 1305-1340.

5. Gottschalk, F., van der Aalst, W.M.P. & Jansen-Vullers, M.H. (2008) Mining Reference Process Models and their

Configurations. in International Workshop on Enterprise Integration, Interoperability and Networking. OTM 2008. LNCS

5333 p. 263-272.

6. Greco, G., Guzzo, A. & Pontieri, L. (2012). Process Discovery via Precedence Constraints, in Frontiers in Artificial

Intelligence and Applications: 20th European Conference of Artificial Intelligence. Montpellier, France. p. 366-371.

7. Gunther, C.W. & van der Aalst, W.M.P. (2007). Fuzzy Mining - Adaptive Process Simplification Based on Multi-

perspective Metrics, in BPM 2007, G. Alonso, Dadam, P., Rosemann, M., Editor. LNCS 4714. p. 328-343.

8. Gunther, H.O. & Kim, K.H. (2005). Container Terminals and Automated Transport Systems: Logistics Control Issues and

Quantitative Decision Support. Springer-Verlag, Berlin.

9. Kawalek, P. & Kueng, P. (1997). The usefulness of Process Models: A lifecycle description of how process models are used

in modern organizations, in International Workshop on Evaluation of Modelling Methods in Systems Analysis and Design. p.

1-12.

10. La Rosa, M., Gottschalk, F., Dumas, M. & van der Aalst, W.M.P. (2008). Linking Domain Models and Process Models for

Reference Model Configuration, in BPM 2007 Workshops, B.B. A.ter Hofstede, H.-Y. Paik, Editor. LNCS 4714. p. 417-430.

11. Li, C., Reichert, M. & Wombacher, A. (2011). Mining business process variants: Challenges, scenarios, algorithms. Data &

Knowledge Engineering, 70(5): p. 409-434.

12. Ly, L.T., Indiono, C., Mangler, J., Rinderle-Ma, S. (2012). Data Transformation and Semantic Log Purging for Process

Mining, in International Conference on Advanced Information Systems Engineering (CaISE). p. 238-253.

13. Rashidi, H. & Tsang, E.P.K. (2013) Novel Constraints satisfaction models for optimization problems in container terminals.

Applied Mathematical Modelling, 37: p. 3601-3634.

14. Rozinat, A., de Medeiros, A., Gunther, C., Weitjers, A. & van der Aalst, W.M.P. (2007). Towards an evaluation framework

for process mining algorithm, in BPM Center Report BPM-07-06. Eindhoven University of Technology: Eindhoven.

15. Salvagnin, D. (2008). Constraint Programming Techniques for Mixed Integer Linear Programming, in Department of

Information Engineering. University of Padova: Padova. p. 97.

37

16. van der Aalst, W.M.P., Weijters, A. & Maruster, L. (2004). Workflow mining: Discovering Process Models from Event

Logs. IEEE Transactions on Knowledge and Data Engineering, 16(9): p. 1128-1142.

17. van der Aalst, W.M.P., Dumas, M., Gottschalk, F., ter Hofstede, A.H.M., La Rosa, M. & Mendling, J. (2008). Correctness-

Preserving Configuration of Business Process Models, in Fundamental Approaches to Software Engineering, J.L. Fiadeiro,

Inverardi, P., Editor. LNCS 4961. p. 46-61.

18. van der Aalst, W.M.P. (2011). Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer-

Verlag, Berlin.

19. van der Werf, J.M.E.M., van Dongen, B.F., van Hee, K., M., Hurkens, C.A.J. & Serebrenik, A. (2009). Process Discovery

using Integer Linear Programming. Journal Fundamenta Informaticae - Petri Nets, 94(3-4): p. 387-412.

20. van Dongen, B.F. & van der Aalst, W.M.P. (2005). A Meta Model for Process Mining Data, in CAiSE'05 Workshops

(EMOI-INTEROP Workshop), J. Casto, Teniente, E., Editor. p. 309-320.

21. Weijters, A., van der Aalst, W.M.P. & de Medeiros, A. (2006). Process mining with heuristic miner algorithm, in BETA

Working Paper Series, WP 166. Eindhoven University of Technology: Eindhoven.

22. Yahya, B.N., Bae, H., Bae, J. & Kim, D. (2012a). Generating Valid Reference Business Process Model using Genetic

Algorithm. International Journal of Innovative Computing, Information and Control, 8(2): p. 1463-1477.

23. Yahya, B.N., Wu, J.-Z. & Bae, H. (2012b). Generation of Business Process Reference Model Considering Multiple

Objectives. Industrial Engineering & Management Systems, 11(3): p. 233-240.

24. Yahya, B.N., Bae, H., Bae, J. & Liu, L. (2012c). Tool Support for Process Modeling using Proximity Score Measurement.

International Journal of Innovative Computing, Information and Control, 8(7B): p. 5381-5399.

25. Yahya, B.N., Bae, H., Sul, S. & Wu, J.-Z. (2013). Process Discovery by Synthesizing Activity Proximity and User's Domain

Knowledge, in Asia Pacific Conference on Business Process Management 2013, M. Song, Wynn, M.T., Liu, J., Editor.

LNBIP 159. p. 92-105.

26. Fayyad, U., Shapiro, G., Uthurusamy R., (2003). Summary from the KDD-03 panel - Data mining: the next 10 years. ACM

SIGKDD Explorations Newsletter, 5(2), 191-196.

27. Ankerst, M., (2002), Report on the SIGKDD-2002 panel the perfect data mining tool: interactive or automated? ACM

SIGKDD Explorations Newsletter, 4(2): 110-111.

28. Cao, L., Zhang, C. (2007). Domain-driven, Actionable Knowledge Discovery, IEEE Intelligent Systems 22 (4): 78-88.

29. Yang, Q., Yin, J., Ling, C., Pan, R. (2007). Extracting Actionable Knowledge from Decision Trees. IEEE Transactions on

Knowledge and Data Engineering, 19 (1): 43-56.

30. Silberschatz, A., Tuzhilin, A. (1996). What Makes Patterns Interesting in Knowledge Discovery Systems. IEEE

Transactions on Knowledge and Data Engineering 8 (6): 970-974.

31. Trcka, N., van der Aalst, W.M.P., Sidorova, N. (2009). Workflow completion patterns. Proceeding of the fifth annual IEEE

International Conference on Automation Science and Engineering, pp. 7 - 12

32. Yoon, S., Henschen, L., Park, E., Makki, S. (1999). Using Domain Knowledge in Knowledge Discovery. Processing of the

eight International Conference of Information and Knowledge Management, pp. 243-250.

33. Rozinat, A., de Jong, I.S.M., Gunther, C.W., van der Aalst, W.M.P. (2009). Process Mining Applied to the Test Process of

Wafer Scanners in ASML, IEEE Systems, Man and Cybernetics 39 (4), 474-479.

34. Cao, L., Zhao, Y., Zhang, H., Luo, D., Zhang, C., Park, E.K. (2010). Flexible Frameworks for Actionable Knowledge

Discovery, IEEE Transactions on Knowledge and Data Engineering 22 (9), pp. 1299 - 1312.

35. Liu, B. and Hsu, W. (1996). Post-Analysis of Learned Rules. Proceedings of National Conference Artificial Intelligence /

Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI).

38

36. Wang, Y., Caron, F., Vanthienen, J., Huang, L., Guo, Y. (2014). Acquiring logistics process intelligence: Methodology and

an application for a Chinese bulk port. Expert Systems with Applications 41, pp. 195 – 209.

37. Rebuge, A., Ferreira, D.R. (2012). Business process analysis in healthcare environments: A methodology based on process

mining. Information Systems 37, pp. 99 – 116.

38. Goedertier, S., Weerdt, J.D. Martens, D. Vanthienen, J., Baesens, B. (2011). Process discovery in event logs: An application

in the telecom industry. Applied Soft Computing 11, pp. 1697 – 1710.

39. van der Aalst, Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medeiros, A.K., Song, M., Verbeek, H.M.W.

(2007). Business process mining: an industrial application. Information Systems 32 (5), pp. 713 – 732.

40. Liu, B, Hsu, W., Chen, S. Ma, Y. (2000). Analyzing the Subjective Interestingness of Association Rules, Journal IEEE

Intelligent Systems 15 (5), pp. 47-55.

41. Bie, T. D. (2013). Subjective Interestingness in Exploratory Data Mining. Chapter in Advances in Intelligent Data Analysis

XII, vol. 8207, pp. 19-31.

42. Silberschatz, A., Tuzhilin, A. (1995). On Subjective Measures of Interestingness in Knowledge Discovery. KDD-95

Proceedings.

43. Adomavicius, G., Tuzhilin, A. (1997). Discovery of Actionable Patterns in Databases: The Action Hierarchy Approach.

Proceedings of the 3th International Conference of Knowledge Discovery and Data Mining, The AAAI Press.

44. Agrawal, R., Gunopulos, D., Leymann, F. (1998). Mining process models from workflow logs, Proc. of the 6th Int’l Confe.

On Extending Database Technology (EDBT), Valencia, Spain.

45. de Medeiros A K A, Weijters A J M M, van der Aalst W M P. (2007) Genetic process mining: an experimental

evaluation. Data Mining and Knowledge Discovery, 14(2): 245-304.

46. Wen L, van der Aalst W M P, Wang J. (2007). Mining process models with non-free-choice constructs. Data Mining

and Knowledge Discovery, 15(2): 145-180.

47. Carmona J, Cortadella J. (2014). Process Discovery Algorithms using Numerical Abstract Domains. IEEE Transactions

on Knowledge and Data Engineering, 26(12): 3064-3076.

48. Cook J E, Du Z, Liu C. (2004). Discovering models of behavior for concurrent workflows. Computers in industry, 53(3):

297-319.

49. Pinter S S, Golani M. (2004). Discovering workflow models from activities’ lifespans. Computers in Industry, 53(3): 283-

296.

50. Hwang S Y, Yang W S. (2002). On the discovery of process models from their instances. Decision Support

Systems, 34(1): 41-57.

51. van der Aalst W M P. (2013). Decomposing Petri nets for process mining: A generic approach. Distributed and Parallel

Databases, 31(4): 471-507.

52. Solé M, Carmona J. (2011). Light region-based techniques for process discovery. Fundamenta Informaticae, 113(3-4): 343-

376.

53. Carmona J. (2012). Projection approaches to process mining using region-based techniques. Data Mining and Knowledge

Discovery, 24(1): 218-246.

54. de Medeiros, A.K.A., van Dongen, B.F., van der Aalst, W.M.P., Weijters, A.J.M.M. (2004). Process Mining for Ubiquitous

Mobile Systems: An Overview and a Concrete Algorithm. UMICS. 151 - 165.

Appendix.

39

Theorem 1. Let G = <V, ED> be a sound graph and let L be a complete event log. For any mcij ∈MC	 | vi, vj ∈V ∧

(vi, vj) ∈ED	implies soundness.	

1. If	∃k edkij ≠ ∅, then a graph G with domain knowledge mcij is sound.

2. If	∀k edkij = ∅, then a graph G with domain knowledge mcij is sound.

3. If	∀k edkii = ∅, then a graph G with domain knowledge mcii is sound.

Proof.

1. Assume there exist a causal relation of two nodes such that edkij ≠ ∅. From Definition 2, we know that edkij

≠	 ∅ implies that eik ≻ ejk and hence exists as a causal relation Fij or an edge of two nodes (vi, vj) | vi, vj ∈V ∧	

(vi, vj)	 ∈	 ED. A constraint of mandatory causality mcij ∈MC | vi, vj ∈V ensures that such relation exists in

the k-th trace, 𝜎k = <ek1, ek2, ..., ekn> ∈	 L, and can be seen in the dependency graph G. Then, the mined

model hold the soundness.	

2. Assume there does not exist a causal relation of two nodes such that edkij = ∅. From Definition 2, we know

that edkij =	 ∅ implies that eik ⊁ ejk and there is neither causal relation Fij nor an edge of two nodes (vi, vj) | vi

, vj ∈V ∧	 (vi, vj)	 ∈	 ED. A constraint of mandatory causality mcij ∈MC | vi, vj ∈V creates such relation. If

the node vi is not an end activity, there should be, at least one, successor node until an end activity. The

additional relation to node vj that is not a start activity keep the soundness property and impose an addition

constraint of edkij ≠	 ∅. Unless vi is an end activity and vj is a start activity, the dependency graph remains

sound. Then, the mined model hold the soundness.	

3. Assume that a constraint of mandatory causality mcii ∈MC | vi ∈V is imposed by domain expert. Since the

dependency graph G has hold the soundness property, given a new created relation such as a self-loop will

not affect the soundness. Then, the mined model keep holding the soundness.	

Theorem 2. Let G = <V, ED> be a sound graph and let L be a complete event log. For any icij ∈IC	 | vi, vj ∈V	

implies soundness.

Proof. Assume there exists a causal relation of two nodes such that (vi, vj) ≠ ∅ and it implies that ∃k eik ≻ ejk. A

constraint of indifferent causality icij ∈IC | vi, vj ∈V exhibits no causal relation between two vertices. Hence, it

disconnects two vertices (vi, vj) = ∅. Suppose that vi ≠ vN (vj ≠ vo), there should be a successor (a predecessor) and a

valid sequence until an end node (a start node) according to the soundness property. If the imposed constraint cause

no connectivity ∀l∈{1,…,|A|},l≠i (vi, vl) ∈ ED and ∀m∈{1,…,|A|},m≠j (vm, vj) ∈ ED, constraints 12 and 13 in the ILP have

been taken into account to do causality assignment for discovering sound process model. It means, those constraints

40

will search the best proximity to be the successor and predecessor of vi and vj, respectively. Then, the mined model

hold the soundness.

Theorem 3. Let G = <V, ED> be a sound graph and let L be a complete event log. For any caij ∈CA	 | vi, vj ∈V

implies soundness.

Proof. From Theorem 2, we can deduce soundness when indifferent causality disconnects two nodes, vi and vj such

that vi ≠ vN and vj ≠ vo. Similarly, there might be disconnected nodes due to concurrent activities. Since Theorem 2

hold the soundness, hence intuitively this theorem holds the soundness as well.

Theorem 4. Let G = <V, ED> be a sound graph and let L be a complete event log. For any vj ∈V,

1. If vi ≠ v0 and vi = ds and there exists (vj ,vi) ∈ ED, then G’ is an improved sound graph of G / {(vj, vi) | ∀j vj

∧(vj ,vi) ∈ ED}

2. If vi = v0 and vi = ds and there exists (vj ,vi) ∈ ED, then G’ is an improved sound graph of G / {(vj, vi) | ∀j vj

∧(vj ,vi) ∈ ED}

Proof. Now we should prove the above two sub theorems respectively.

1. Assume vi ≠ v0. For any (vj ,vi) ∈ ED | vi, vj ∈V, there exists at least one vj to have causal relation with vi to

produce a sound process model. If vi ≠ v0, then there is a possibility of vi to be vN. In the case that vi = vN,

according to the definition of path (Definition 5), a trace should have events at least two. Hence, a

designated start of vi which carry out property vi = v0 will lead to unsound process model. On the other

hand, when vi ≠ vN, the designated start of vi will disconnect the relation between vj and vi and keep

producing a sound model following the soundness property to have flow of a node either from start node or

to end node. Hence, the theorem holds the soundness property.

2. Assume vi = v0. Although vi is a start node, there could be a relation of (vj ,vi) ∈ ED | vi, vj ∈V, ∃k ej
k
 ≻ ei

k.

If vi = v0, then vi ≠ vN. If vi is assigned as designated start, it should satisfy the start node as defined in

Definition 2. As a result, the disconnection of the relation (vj ,vi) will not lead to unsound process model

since ∃k ei
k
 ≻ el

k such that i < l. Hence, the theorem holds the soundness property.

Theorem 5. Let G = <V, ED> be a sound graph and let L be a complete event log. For any vi ∈V,

3. if vj ≠ vN and vj = de and there exists (vj ,vi) ∈ ED, then G’ is an improved sound graph of G / {(vj, vi) | ∀i vi

∧(vj ,vi) ∈ ED}

41

4. if vj = vN and vj = de and there exists (vj ,vi) ∈ ED, then G’ is an improved sound graph of G / {(vj, vi) | ∀i vi

∧(vj ,vi) ∈ ED}

	

Proof. Similar with previous theorems, we should prove the above two sub theorems respectively.

1. Assume vj ≠ vN. For any (vj ,vi) ∈ ED | vj, vi ∈V, there exists at least one vi to have causal relation with vj

to produce a sound process model and it has a possibility of vi = vN. In the case that vi = vN, according to the

definition of path (Definition 5), a trace should have events at least two. Hence, a designated start of vi

which carry out property vi = v0 will lead to unsound process model. On the other hand, when vi ≠ vN, the

designated start of vi will disconnect the relation between vj and vi and keep producing a sound model

following the soundness property to have flow of a node either from start node or to end node. Hence, the

theorem holds the soundness property.

2. Assume vj = vN. Although vj is an end node, there could be a relation of (vj ,vi) ∈ ED | vi, vj ∈V, ∃k ej
k
 ≻ ei

k.

If vj = vN, then vj ≠ v0. If vj is assigned as designated end, it should satisfy the end node as defined in

Definition 2. As a result, the disconnection of the relation (vj ,vi) will not lead to unsound process model

since ∃k el
k
 ≻ ej

k such that l < j. Hence, the theorem holds the soundness property.

