
Predicting Performances in Business processes using
Deep Neural Networks

Gyunam Park, Minseok Song∗

Department of Industrial & Management Engineering, POSTECH (Pohang University of
Science and Technology), Pohang, Republic of Korea

Abstract

Online operational support is gaining increasing interest due to the availability

of real-time data and sufficient computing power, such as predictive business

process monitoring. Predictive business process monitoring aims at providing

timely information that enables proactive and corrective actions to improve

process enactments and mitigate risks. There are a handful of research works

focusing on the predictions at the instance level. However, it is more practical

to predict the performance of processes at the process model level and detect

potential weaknesses in the process to facilitate the proactive actions that will

improve the process execution. Thus, in this paper, we propose a novel method

to predict the future performances of a business process at the process model

level. More in detail, we construct an annotated transition system and generate

a process representation matrix from it. Based on the process representation

matrix, we build performance prediction models using deep neural networks

that consider both spatial and temporal dependencies present in the underlying

business process. To validate the proposed method, we performed case studies

on three real-life logs.

Keywords: Process mining, Process management, Online operational support,

Process performance prediction, Deep neural networks

∗corresponding author

Preprint submitted to Decision Support Systems October 18, 2019

1. Introduction

In today’s competitive and challenging business world, it is of utmost impor-

tance to consistently improve business processes [1]. Process mining, a promising

discipline that aims at extracting process-oriented knowledge from event data

stored in information systems, has provided practical techniques to that end.

Traditionally, process mining focus on analyzing historical data in order to fully

understand the process of an organization and identify possible improvements

[2]. In recent years, research in process mining has shifted the spotlight from

this offline analysis to online operational support due to the availability of real-

time data and sufficient computing power. Different from the offline analysis,

online operational support aims at monitoring and influencing running cases. As

one of the approaches in online operational support, predictive business process

monitoring provides timely information that enables proactive and corrective

actions to improve process enactments and mitigate risks [3]. Task/resource

recommendations [4] and risk notifications [5] are examples of those actions.

Existing studies in predictive business process monitoring focus on making

predictions at the process instance level (e.g., predicting the remaining time for

an instance to complete the process) [6] and identifying problematic instances

(e.g., delayed instances) based on them. However, it is difficult for an oper-

ation manager to manage singular process instances in the complex business

process [7]. Instead, it is more practical to predict the performance of processes

at the process model level (e.g., predicting the processing time and waiting time

of activities in the process) and detect potential weakness (e.g., delayed activ-

ities) in the process to facilitate the proactive actions that will improve the

process execution. For example, in the context of traffic congestion, we focus

on not each vehicle (i.e., each instance) but roads or junctions (i.e., activities in

a process model).

Suppose the temporal performance of a business process evolves over a given

period due to the changes in the process context (e.g., number of cases in

progress, number of resources allocated to process, etc.) [2], as shown in Fig. 1.

2

Figure 1: An example of performance evolution in a business process

During timewindow1(01:00 ∼ 02:00), exceptionally large number of cases enter

the process causing delay in activity A. At timewindow2(02:00 ∼ 03:00), the

limited number of resources causes the next delay in activity B and activity C.

Finally, the accumulated demands for activity D after finishing either activity

B or activity C result in the new delay on activity D. If it recurs regularly and

is expected to be valid in the future, we call it a pattern [8]. Given this pattern,

at timewindow2, one can predict the problematic point in the business process

(i.e., activity D) and take proactive actions such as assigning more resources to

serve it and finding an alternative activity to bypass it.

Thus, in this paper, we aim at developing a method to predict the future

performances of a business process at the process model level to enable proactive

actions to improve the business process. To this end, we concentrate on the

similarity between the traffic and the business process model [2]. We can think

of cars in the traffic as cases in the business process model, roads as activities,

and movements as events. The congestion in the traffic can be understood as

bottlenecks in the business process. In the field of traffic research, the congestion

prediction, that aims at predicting the future speed of roads based on historical

observations, is known as an essential but challenging problem [9]. In recent

years, the large volume of traffic data enables the researchers to develop novel

prediction algorithms based on it. Among those data-driven methods, deep

learning-based approaches, that deploy techniques for image/video processing,

have achieved significant success [10, 11, 12].

Motivated by the recent breakthroughs in congestion prediction problems,

we propose a novel method to predict the future performances of a business

3

process based on deep neural networks (DNN). More in detail, we first discover

a process model from an event log and annotate it with relevant information

by replaying the log. Next, we generate a process representation matrix that

contains information on the performances in the business process. Finally, we

generate a training set from the process representation matrix and construct

performance prediction models based on DNN that consider temporal evolution

and spatial dependency of the process model.

The paper is organized as follows. Section 2 discusses the related work. Sec-

tion 3 explains the backgrounds required to understand the proposed method.

The performance prediction method is explained in Section 4 and evaluated on

two real-life logs in Section 5. Section 6 discusses the usefulness and limitation

of the proposed method. Finally, Section 7 concludes this paper.

2. Related work

2.1. Predictive business process monitoring

Predicting performances in business processes is concerned with the research

of predictive business process monitoring, which is one of the sub-fields of process

mining. It encompasses the set of methods to build predictive models aiming at

providing timely information which can be used to improve the business process

and mitigate possible process-related risks.

Several approaches have been proposed to predict three types of values: 1)

remaining time, 2) risk probability, and 3) next event [3]. First, the remaining

time prediction is concerned with the completion time of business process in-

stances. Van der Aalst et al. [6] suggests a configurable method to construct

a process model where the annotated values are used to predict the remaining

time of instances. Extending on [6], Polato et al. [13] proposes a method to

predict the remaining time using a set of machine learning approaches, such as

Naive Bayes and Support Vector Regression (SVR). Second, the risk prediction

generates various process-related risks in a business process. Pika et al. [14]

propose a set of process risk indicators such as abnormal execution time and

4

repetition of multiple events and predict them with statistical techniques. Kang

et al. [15] develop the monitoring system to predict the abnormal termination of

a running instance using the K-Nearest Neighbor technique. Finally, the next

event prediction deals with what the next event (e.g., activity, resource, and

timestamp) will become. Breuker et al. [16] develop a method to determine the

next activity in a running instance using Probabilistic Finite Automaton (PFA)

built upon a Petri net. Motivated by natural language processing, a couple of

approaches [17, 18] apply the recurrent neural network (RNN) to predict the

next event in a business process. These approaches are extended by Mehidiyev

et al. [19], where the authors utilized a deep learning architecture composed

of unsupervised stacked autoencoders and supervised fine-tuning with n-gram

features which are leveraged by feature hashing.

Existing studies in predictive business process monitoring focus on predicting

the future status of running instances. This instance-level prediction enables

operational support for enhancement in productivity. For example, operation

manager can take actions for instances which are expected to be delayed or

prone to risks. However, this microscopic approach is not sufficient for the

comprehensive management of a business process. In this regards, we need to

provide the model-level predictions such as the future bottlenecks in the business

process to enable proactive actions to mitigate them.

2.2. Congestion prediction

Congestion prediction problem, one of the most attractive problems in trans-

portation management, means to predict the future speed of roads based on his-

torical observations. Over the last few years, the availability of traffic data has

been increased, and many approaches try to solve the problem in a data-driven

manner [20].

Recently, deep learning algorithms with its competency in extracting features

are widely applied to the congestion prediction problem. The deep-learning-

based methods pay special attention to learn spatial and temporal correlations

existing in a traffic network. Ma et al. [10] applies a Long-Short Term Memory

5

neural network (LSTM NN) to capture the dynamic nature of the traffic net-

work. A couple of approaches based on Convolutional Neural Networks (CNN)

are also presented in recent years [21, 11], showing good performances. To con-

sider network structure, Yu et al. [12] proposes a method which incorporates

CNN and LSTM.

Motivated by the recent breakthroughs in the congestion prediction problem,

We develop a novel method to predict the future performances of a business

process given historical observations. To this end, We extend the deep-learning-

based models suggested in this literature.

3. Backgrounds

This section describes the background necessary to understand our approach.

We first explain preliminary concepts related to process mining that we will use

throughout the paper. Second, we elaborate transition system we use to discover

a process model from the event log. Finally, we provide basic concepts of three

different deep neural networks.

3.1. Preliminaries

Process mining techniques can extract useful information from event logs.

An event log is detailed information about the activities that have been executed

in a single process [2]. In this sub-section, we give formal definition of event,

trace and event log. First, an event is a record of the execution of an activity.

It contains information such as activity, resource, timestamp.

Definition 1 (Event). Let E be the event universe. Events are characterized

by various attributes (e.g., activity, originator, timestamp). Let AN be a set of

attribute names. For any event e ∈ E and any attribute name an ∈ AN , πan(e)

is the value of an for event e. If e does not contain the attribute an, πan(e) =⊥.

Each event is associated with the process instance (e.g., customer, patient,

or student) which has its trace. Trace is a sequence of events. For example, a

6

patient might undergo a sequence of events, e.g., Blood test, MRI, and Treat-

ment. An event log is a collection of process instances. The formal definition is

as follows:

Definition 2 (Trace, Event log). Let E∗ be the set of all finite sequences over

E. A trace, σ ∈ E∗, is a finite sequence of events. Each event in a trace appears

only once and time is non-decreasing. For σ = 〈e1, e2, ..., en〉, hdk(σ) consists of

first k elements, i.e., hdk(σ) = 〈e1, e2..., ek〉. On the other hand, tlk(σ) consists

of the last k elements, i.e., tlk(σ) = 〈en−k+1, ..., en〉. Let C be the set of traces.

An event log L is a collection of traces, i.e., L = {σc|c ∈ C}.

3.2. Transition system

A transition system is one of the most efficient approaches to model the

behaviors in an event log [2]. A transition system is composed of states, event

labels, and transitions that describe how the system moves from one state to

another. States represent the status of the system, and transitions enable the

system to move from a particular state to another state. Event labels indicate

particular events which trigger the transitions. Transition systems have one or

more initial and final states. From the transition system, one can reason about

the behavior of a process. Starting from the initial states and finishing at the

final states, any path in the graph corresponds to a possible execution sequence

in the business process.

State representation function and event representation function are two core

functions to construct the transition system. The formal definition of them is

as follows:

Definition 3 (State & Event Representation Function). A state represen-

tation function ls ∈ C → Rs produces a representation of a (partial) trace σ,

where C is the set of traces and Rs is the set of state representations (e.g., se-

quences, sets, multiset). An event representation function le ∈ E → Re produces

a representation of an event e, where Re is the set of event representations (e.g.,

πA(e), πτ (e).)

7

A transition system can be produced based on ls and le. With the state

representation function ls, the prefixes in the log are transformed to the states,

creating a state space S (i.e., possible states of the process). Afterwards, the

transition T is computed by replaying the process instances and connecting

states s ∈ S, while using the event representation function le to generate event

label E of the transition. Formally, it is defined as follows:

Definition 4 (Transition System). A transition system TS is defined as a

triplet (S,E, T) such that S = {ls(hdk(σ))|σ ∈ L ∧ 0 ≤ k ≤ |σ|}, E =

{le(σ(k))|σ ∈ L∧1 ≤ k ≤ |σ|}, and T = {ls(hdk(σ)), le(σ(k+1)), ls(hdk+1(σ))|σ ∈

L ∧ 0 ≤ k ≤ |σ|}. Sstart = {ls(〈〉)} is the set of initial states and Send =

{ls(σ)|σ ∈ L} is the set of final states.

We can produce various forms of transition systems based on different ab-

stractions: representation, horizon, and filter [6]. First, representation deter-

mines whether to remove the order and frequency from the trace or not. Second,

horizon means how many events are considered from the prefix to derive the

states. Third, filter decides which events to consider when calculating the state.

For a more detailed explanation, see van der Aalst et al. [6].

3.3. Deep neural networks

Deep neural networks (DNN) have been successfully applied to various do-

mains [22]. In the following, we will explain the architectures of DNN we use in

this paper.

3.3.1. Convolutional neural network

Convolutional Neural Network (CNN) has an exceptional ability to under-

stand the spatial structure of an input (e.g., image). Having this competency,

CNN has achieved remarkable improvements in visual tasks such as image and

video recognition [23].

CNN is composed of model input, feature extraction layers, fully connected

8

layer, and model output. First, let model input be:

x = [x1, x2, , xn], where xi ∈ Rn,∀i ∈ [1, n]. (1)

The combination of convolutional and pooling layers extract the features from

the input. More in detail, the convolutional layer captures the local features

present in the model input by a set of learnable filters called convolutional

kernels w ∈ Rm×m. The kernel convolves every possible window of the model

input, resulting in the feature map:

c ∈ R(n+m−1)×(n+m−1) such that ci,j = f(
∑
k

∑
l

wk,lxi+k−1,j+l−1 + b) (2)

,where b ∈ R is the bias and f is a non-linear activation function. The pooling

layer addresses the most important features by pooling (e.g., max pooling) over

every feature map. The resulting feature map p is computed by:

p = [pool(c)] (3)

Finally, the pooled feature maps from different kernels is concatenated and

flattened:

pflatten = flatten([p]) (4)

It is then passed to the fully connected layer and transformed into model output:

ŷ = wf · pflatten + bf (5)

where wf is the weight of the layer and bf is the bias.

3.3.2. Long-short-term memory neural network

Recurrent Neural Network (RNN) has a competency to learn temporal dy-

namics. Fig. 2 shows the architecture of RNN where the hidden states are

generated in recurrent manner to maintain information over time. Let g be an

activation function (e.g., sigmoid or hyperbolic tangent), xt be the input, ht be

the hidden state, and ot be the output at time t. Following is the recurrent

equation to produce outputs from input sequences.

9

Figure 2: An architecture of Recurrent Neural Networks

ht = g(Uxt +Wht−1 + bh), ot = g(V ht + bo) (6)

Long-Short-Term Memory Neural Network (LSTM NN) is a special kind of RNN

which solves the gradient vanishing problem the conventional RNN models have.

LSTM NN is composed of LSTM units which determine when to forget previous

hidden states and when to update hidden states from new information. A typical

architecture of the LSTM unit consists of a cell state and three gates, i.e., forget

gate, input gate, and output gate. The cell state(i.e., Ct) allows the data to pass

through the neuron without losing much information, while the gates regulate

the flow of information inside the LSTM unit. Each gate is composed of a

sigmoid function, σ, and a pointwise multiplication operation, ⊗. The forget

gate(i.e., ft) decides whether to discard information from the cell state. The

input gate(i.e., it) allows adding new information to the cell state. The output

gate(i.e., ot) determines what the model will generate as an output. Let X, H,

Y be the input time series, the hidden state of memory cells, and the output

time series, respectively. The hidden state of memory cells is calculated in the

following formulas:

ft = σ(Wf [ht−1, xt] + bf), it = σ(Wi[ht−1, xt] + bi)

C̃t = tanh(Wc[ht−1, xt] + bc), Ct = σ(ftCt−1 + itC̃t) (7)

ot = σ(Wo[ht−1, xt] + bo), ht = ottanh(Ct)

where W , b indicates the weights and biases which are learned during the

10

training phase.

3.3.3. Long-term recurrent convolution network

Different from image recognition tasks, video processing requires a model to

deal with variable-length input sequences, and generate variable length outputs

as well. In this regard, Donahue et al. [24] proposed a novel neural network archi-

tecture called Long-term Recurrent Convolutional Networks (LRCNs). LRCN

combines a deep hierarchical visual feature extractor (e.g., CNN) with a re-

current model (e.g., RNN) to recognize and learn temporal dynamics for tasks

involving sequential data (e.g., video recognition).

An LRCN is composed of model input, feature extractor, sequence learning

layer, and model output. Let xt be a model input (i.e., an image or a frame from

a video). The feature extractor fV (·) with parameters V produce a fixed-length

feature vector as follows:

fvt = fV (xt) (8)

A CNN is deployed for this purpose. The feature vector fvt is then passed into

a recurrent sequence learning layer. The recurrent model is LSTM NN with

parameters U , W and V to learn temporal dependencies. Let ht be a hidden

state, ot be an output. In the recurrent model, the feature vector fvt and a

previous time step hidden state ht−1 are used to produce output ot as follows:

ht = g(Uxt +Wht−1 + bh), ot = g(V ht + bo) (9)

Finally, a distribution P (yt) at time t is produced through a linear prediction

layer:

ŷt = Woot + bo (10)

where Wo and bo are learned parameters.

4. Method

This section proposes a method to predict the future performances of a

business process based on deep neural networks. A general overview is presented

first, and then we explain each step in more detail.

11

4.1. Overview

Our method consists of three steps: 1) annotated process model construction,

2) process representation matrix generation, and 3) prediction model construc-

tion. Fig. 3 describes the overview of this method. As the first step, we produce

a process model from an event log and annotate the derived model with mea-

surements by replaying the log. In the process mining discipline, many process

discovery algorithms have been proposed to produce better process models with

different modeling notations. In this paper, we adopt a state transition system

because of its ability to derive diverse forms of features (i.e., not only control-

flow but also organizational/data perspective) for deep learning techniques by

applying various abstraction techniques (see Section 3.2). For example, a state

in a transition system can be an activity, a resource, or the combination of

an activity and a resource, etc. It enables us to use different forms of process

models according to the objectives.

In the second step, we generate a process representation matrix that con-

tains information on the temporal performances in the business process, from

the annotated process model. In this paper, we suggest two forms of the pro-

cess representation matrix that efficiently represent the spatial dependence and

temporal evolution of the business process.

Finally, we generate a training set from the process representation matrix

and train the deep-learning-based prediction models to forecast the future per-

formances of the business process based on the historical records of the perfor-

mances. In this work, we utilize three deep learning architectures (i.e., CNN,

LSTM, and LRCN) to efficiently learn the spatial and temporal dependencies,

which are embodied in the process representation matrix.

4.2. Annotated process model construction

The initial step of the proposed method is to produce a transition system that

describes the behaviors seen in an event log. In the rest of the paper, we assume

a transition system with a state representation function ls(σ) = 〈πA(σ(|σ|)〉,

which represents the partial trace by the sequence of events with horizon of 1,

12

Figure 3: Overview of the proposed method

and an event representation function le(e) = πA(e), which labels the transition

with activities, in order to efficiently deliver the idea behind this research.

Next, we annotate the states and transitions of the transition system with

measurements by replaying the event log to it. The following definition formalize

how to calculate the measurements from the two partial traces σ1 and σ2 such

that σ1 and σ2 is the prefix and the postfix of a trace σ. Each measurement

is annotated to the corresponding state or transition in a transition system.

Although numerous measurements are possible, we use waiting time, processing

time, and sojourn time in this paper.

Definition 5 (Measurements). Let σ1 and σ2 be the prefix trace and postfix

trace of given trace σ. A measurement function lm is a function that generates

tuples of measurement and its relevant timestamp (e.g., (4,00:10)). Formally,

lm ∈ C × C → R+ × T . Let minST/CT (σ) = min{πST/CT (e)|e ∈ σ} and

maxST/CT (σ) = max{πST/CT (e)|e ∈ σ}, where ST and CT stands for the start

time and the complete time. lmwaiting = (minST (σ2)−maxCT (σ1),maxCT (σ1)) if

13

σ1 6= 〈〉 and σ2 6= 〈〉; 0 otherwise. lmprocessing = (minCT (σ2)−minST (σ2),minST (σ2))

if σ2 6= 〈〉; 0 otherwise. lmsojourn = (minCT (σ2) − maxCT (σ1),maxCT (σ1)) if

σ1 6= 〈〉 and σ2 6= 〈〉; 0 otherwise.

The measurements are annotated to the corresponding states and transi-

tions in the transition system to generate the annotated transition system.

Let the prefix of σ be hdk(σ) and the postfix be tl|σ|−k(σ). A measurement

lm(hdk(σ), tl|σ|−k(σ)) is annotated to the state ls(hdk+1(σ)), or the transition

(ls(hdk(σ)), le(σ(k + 1)), ls(hdk+1(σ))). The formal definition of the annotated

transition system is as follows:

Definition 6 (Annotated transition system). Let L be an event log and

TS = (S,E, T) a transition system based on a state representation function ls

and event representation function le. Given a particular measurement function

lm, we define a state annotation function As ∈ S → B(M) such that As(s) =∑
σ∈L

∑
1≤k≤|σ|−1,s=ls(hdk+1(σ))∈S [lm(hdk(σ), tl|σ|−k(σ))]. In other words, As(s)

is a multi-set composed of measurements corresponding to the state s. In ad-

dition, we define a transition annotation At ∈ T → B(M) such that At(t) =∑
σ∈L

∑
1≤k≤|σ|−1,t=(ls(hdk(σ)),le(σ(k+1)),ls(hdk+1(σ)))∈T [lm(hdk(σ), tl|σ|−k(σ))]. In

other words, At(t) is a multi-set composed of measurements corresponding to the

transition t. An annotated transition system is the tuple (S,E, T,As, At)

4.3. Process representation generation

In this step, we build a process representation matrix from an annotated

transition system. To this end, we first define temporal aggregation functions

that will be used to calculate a temporary performance measure from mea-

surements in an annotated transition system. Using the temporal aggregation

function, we derive two different types of process representation matrix that

will be used to produce a training set (i.e., predictor and response variables) for

prediction models in the next step.

In order to evaluate the evolution of the performances in the underlying

business process, we need the time window upon which we calculate the temporal

14

performance. If we want to measure the hourly evolution of performances in

the business process, we need the time windows of an hour, e.g., [Oct. 5 00:00,

Oct. 5 01:00], [Oct. 5 01:00, Oct. 5 02:00], and so on. The definition of the

time window is as follows:

Definition 7 (Time window). Given a time point t, a time period p, the [t,

t+ p] will form a single block. Given a time stride s, the next block slides with

s, i.e., [t+s, t+p+s] will form the next block. Suppose T is the whole range.

TWp,s is a set of all blocks formed by p and s within T .

After producing a set of time windows, we need to calculate the temporal

performance measures of the states and transitions associated with each time

window. To this end, we use temporal aggregation function (e.g., average).

Definition 8 (Temporal aggregation function and performance measure).

Let tw ∈ TW be a time window and M be a multi-set of measurements. A tem-

poral aggregation function, aggtw(M) is a function that generates a numerical

value by aggregating measurements M at tw. Formally, aggtw ∈ M → R such

that M is multi-set of measurements. pM,tw
agg is the temporal performance mea-

sure resulting from the temporal aggregation function aggtw.

This paper proposes two forms of process representation matrix to em-

bed the evolution of performance in business processes efficiently. First, the

two-dimensional process presentation matrix expresses the evolutionary perfor-

mances of a business process in the two-dimensional matrix. Using the process

model entities (i.e., state and transition) and the time windows as the first

and second dimensions, we efficiently represent the spatial dependence and the

temporal evolution.

Definition 9 (two-dimensional process representation matrix). Let tw ∈

TW be a time window and o ∈ {state, transition} be the state and transition

in the annotated transition system. Then, a matrix R2dim,o ∈ R|O|×|TW | is

called 2-dimensional representation matrix with ri,j indicating the performance

15

measure of oi at twj, i.e., aggtwj (Ao(oi)), where Ao ∈ {As, At} is the state or

transition annotation function.

Second, a three-dimensional process representation matrix efficiently em-

bodies the spatial dependency in the first two dimensions and the temporal

evolution in the third dimension. The first two dimensions represent the net-

work topology (i.e., directly-follows relations) and indicate the outgoing state

(i.e., from-state) and the incoming state (i.e., to-state). The third dimension is

the time window.

Definition 10 (three-dimensional process representation matrix). Let

tw ∈ TW be a time window and s ∈ S be the state in the annotated transition

system. Let tr(s1, s2) be a function to produce the transition connecting s1 and

s2 in the annotated transition system. Then, a matrix R3dim ∈ R|S|×|S|×|TW |

is called three-dimensional process representation matrix with ri,j,k representing

the performance measure of transition t = tr(si, sj) ∈ T at tw, i.e., aggtw(At(t))

such that At is the transition annotation in the annotated transition system.

4.4. Prediction model construction

In this step, we aim at learning a performance prediction function which re-

turns future performance measures of the states and transitions in the business

process, given the historical performance measures of them. In order to con-

sider both spatial and temporal dependencies underlying the business process,

we deploy three deep neural networks that show the competency in learning

spatiotemporal correlations in the traffic network, i.e., CNN [11], LSTM [10],

and LRCN [12]. In the following, we will explain each of three prediction mod-

els, i.e., CNN-based model, LSTM-based model, and LRCN-based model. Fig. 4

shows the architecture of each prediction model. Although the proposed models

have different input and model architecture, the procedure to construct them is

composed of the same two phases, i.e., 1) training set generation and 2) model

learning.

16

Figure 4: Architectures of prediction models

4.4.1. CNN-based prediction model

A CNN has the competency to extract essential features from the input im-

age (See Section 3.3), img ∈ Rheight×width×channels where channels commonly

represent the RGB values. In order to exploit its competency, we generate

image-like input, x ∈ Robject×tw×channel from two-dimensional process repre-

sentation matrix R2dim,o by setting the number of channels as one. Let P be

the length of input time windows. The model input can be written as:

x′j = [rj , rj+1, , rj+P−1], j ∈ [1, |TW | − P], (11)

where rj is a column vector representing performance measures at twj , i.e.,

R2dim,o
·,j . By adding a channel of 1, we transform x′j ∈ R|O|×|TW | to an image-

like xj ∈ R|O|×|TW |×1. The model output can be written as:

yj = [rj+P], j ∈ [1, |TW | − P] (12)

where rj+P is a column vector representing performance measures at twj+P ,

R2dim,o
·,j+P .

Afterward, we train a CNN-based prediction model that extracts spatiotem-

poral features embedded in the model input, where the first and second dimen-

sions represent the temporal and spatial information, respectively. Fig. 4-(a)

shows the architecture of the proposed CNN model. The model input xj is

passed to a feature transformation fV (.) that consists of the combination of

convolution and pooling layers. Through the transformation, the model learns

17

the spatiotemporal features of the business process. The extracted features

fV (xj) from different filters are concatenated to a dense vector by flattening,

and then they are passed into a fully connected layer to be transformed to the

model output ŷj .

We train all sets of network weights using RMSProp algorithm [25] such that

the mean absolute error (MAE) between the predicted value ŷ and the actual

value y is minimized. We use convolutional filters of size (3, 3) and max pool-

ings of size (3, 3). Convoultional layers consecutively transform the number of

channels into 32 and 16 with the corresponding number of convolutional filters.

As regularization strategies, we use Dropout [26] and Batch Normalization [27].

4.4.2. LSTM-based prediction model

Long-Short Term Memory Neural Networks (LSTM) has the competency to

learn long temporal dependency for the input sequence. The strength to learn

the temporal dependency is suitable for predicting the future performances of

the business process based on historical performances. Furthermore, by pro-

ducing a sequence of vectors as model input where each vector represents the

snapshot of performances on all locations in the business process model, we

can construct the prediction model to reflect both the spatial and temporal

information effectively. To this end, we first generate a training set from the

two-dimensional process representation matrix R2dim,o using equation (11) and

(12) in Section 4.4.1.

Afterward, we train an LSTM-based prediction model from the training set.

Fig. 4-(b) shows the unrolled structure of the proposed LSTM-based prediction

model. Note that the number of steps LSTM unrolled is P that is the length

of input time windows. The model is composed of two hidden LSTM layers,

where each layer contains multiple memory cells. Each layer contains LSTM

cells as much as the number of column vectors in xj . The model is trained in a

recurrent manner. In other words, LSTM cell f1W1
(.) with parameters W takes

as input not only the element xj,t in the model input xj , but also the hidden

state hj,t−11 generated from the previous LSTM cell. The output oj,t1 of the

18

LSTM cell in the first layer is passed to the next LSTM f2W2
(.)layer as an input.

The output oj,t2 of the last LSTM cell in the second layer becomes an input to

a fully connected layer fL(.), which then produces the prediction results ŷj .

We train all sets of network weights using RMSProp algorithm [25] such that

MAE between the predicted value ŷ and the actual value y is minimized. The

number of hidden states in the first layer is twice as large as the input dimension,

and the number of hidden states in the second layer is four times larger than the

input dimension. As regularization strategies, we use Dropout [26] and Batch

Normalization [27].

4.4.3. LRCN-based prediction model

It is paramount to reflect the process model topology to build an accurate

prediction model. To this end, we produce a model input based on the three-

dimensional process representation matrix R3dim, which involves the directly-

follows relations. The model input can be written as:

xj = [imgj , imgj+1, , imgj+P−1], j ∈ [1, |TW | − P] (13)

, where imgj is an image generated from R3dim
·,·,j (i.e., the performance at jth

time window) by setting the channel as one just as we did in Section 4.4.1.

The model output can be written as:

yj = [imgj+P], j ∈ [1, |TW | − P] (14)

, where imgj+P is an image generated from R3dim
·,·,j+P (i.e., the performance j+Pth

time window) by setting the channel as one.

We can understand the prediction task as the video recognition problem

where the previous sequence of frames (i.e., images) is used to predict the future

frame. An LRCN, a class of neural network architectures for video recognition,

combines a visual feature extractor (i.e., CNN) and a recurrent model (i.e.,

LSTM) which recognize the temporal dynamics of the sequential images. Fig.

4-(c) shows the architecture of our LRCN-based prediction model. We start

by passing each element xj,t in xj through a CNN, fV , with parameters V to

19

produce a feature vector fvj,t. The resulting feature vector fvj,t = fV (xj,t) is

then passed into a LSTM layer. The LSTM layer fW works in recurrent manner

by taking both feature vector fvj,t and previous hidden state hj,t−11 as an input.

For example, h1 = fW1
(fvj,1, hj,01) = fW1

(fvj,1, 0), h2 = fW1
(fvj,2, hj,11) =

fW1(fvj,2, fW1(fvj,1, 0)), etc. We stack another LSTM layer as we do for the

LSTM-based model. The output of the second LSTM layer oj,P2 is passed through

a fully connected layer, which then generate the model output ŷj .

Since this model is the combination of CNN-based model and LSTM-based

model, we follow the same procedure as the previous two approaches to train

the model.

5. Evaluation

In order to evaluate the applicability of the proposed method to predict

the future performances of a business process, we conduct three case studies

with real-life logs: healthcare service, BPI Challenge 2012 (BPIC’12) 1, and

helpdesk 2. When applying the proposed method, we initialized all network

weights using a uniform random distribution over [0.1, 0.1]. The models were

trained with a batch size of 16 with 100 epochs and a learning rate of 0.001. The

learning rate decreased by a factor of 0.1 when a metric has stopped improving.

The training was stopped if the loss stops decreasing for five epochs. In the case

studies, we compare the proposed method with the two baseline approaches,

i.e., statistical approach and search-based approach.

Statistical approach. Existing studies [13] enrich each state with a predic-

tion model to conduct a prediction task. Based on these works, we design an

approach that builds an individual prediction model for each state and transi-

tion in the transition system. Through the prediction model, we can predict

the future performance of individual state and transition based on its historical

1https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
2https://doi.org/10.17632/39bp3vv62t.1

20

performances. The statistical algorithms we utilize for this purpose are linear

regression (LR), random forest (RF), and support vector machine (SVR).

Search-based approach. The performance of a business process is likely to be

repeated with some periodicity. In this regard, one intuitive method to predict

future performance in the business process is first to find the most similar past

status with the current status and then suggest its next performance record

as a prediction. To this end, we take a snapshot for each time window in the

form of a one-dimensional vector whose elements indicate the performances of

states from the transition system. Next, we calculate the distance between the

historical snapshots and the current one. Afterward, we find the prior snap-

shot having the shortest distance and provide its next snapshot as a prediction.

The distance metrics we utilize in this approach are Euclidean Distance (Euc.),

Chebyshev Distance (Che.), and Cosine Distance (Cos.).

Note that the proposed method and two baseline approaches are imple-

mented in Python3.6.8, and the source code and supplementary materials re-

quired to reproduce the experiments can be found at the Github repository 3.

In each case study, the experiments were performed with 5-fold cross-validation.

To measure and compare the prediction accuracy, we used two metrics: Mean

Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). Let yi,t

and ŷi,t denote the actual and predicted performance at time t at object(i.e.,

state or transition) i.

5.1. Case study I: healthcare service process

The real-life log used in this case study is from an emergency department in

a tertiary hospital in South Korea. It contains event records of the treatment

process in the emergency department, collected from January 2018 to December

2018. The log is comprised of 459,700 events by 29,871 patients who visit the

3https://github.com/gyunamister/performance_prediction.git

21

emergency department. Each patient goes through 15 activities on average

until they leave. The average time for each patient to stay in the department

is approximately 8.5 hours. The unique number of activities conducted in the

process is 19. In total, 754 resources serve the activities in a shift system.

In this case study, we aim at evaluating the applicability of our proposed

method in different settings. To this end, we define four purposeful tasks by

discussing with domain experts, each of which represents if the task is short-term

or long-term and with enough information or limited information. We consider

the next hour prediction as a short-term prediction and the next three-hour

prediction as a long-term prediction. Also, the available performance records

for 12 times and 24 times of the prediction length are regarded as limited and

enough information, respectively. Let tasks be specified with the (time interval

of output, time interval of input). The four tasks are as follows:

• Task 1 with (1,24) : 1 hour prediction using past 24 hours, i.e., short-term

prediction with enough information

• Task 2 with (1,12): 1 hour prediction using past 12 hours, i.e., short-term

prediction with limited information

• Task 3 with (3,72): 3 hour prediction using past 72 hours, i.e., long-term

prediction with enough information

• Task 4 with (3,36): 3 hour prediction using past 36 hours, i.e., long-term

prediction with limited information

For each task, we predict the average sojourn time for states and transitions

in the business process model. The experiments were performed using an entire

log with 5-fold cross-validation.

Table 1 shows mean absolute error (MAE) and mean absolute percentage

error (MAPE) of predicting average sojourn time for states and transitions.

Our deep-learning approach generally works better than both the statistical ap-

proach and the search-based approach both in the short-term (i.e., Task 1 and

Task 2) and the long-term (i.e., Task 3 and Task 4) prediction. The bold font

22

Table 1: MAE (hours) and MAPE of predicting average sojourn time for states and transitions

in healthcare service process using 5-fold cross validation (ST: statistical approach, SB: search-

based approach, DL: deep-learning approach)

Task 1 Task 2

State Transition State Transition

MAE MAPE MAE MAPE MAE MAPE MAE MAPE

ST

LR 0.42± 0.01 0.15± 0.01 0.15± 0.01 0.06± 0.01 0.41± 0.01 0.14± 0.01 0.15± 0.01 0.06± 0.01

RF 0.42± 0.01 0.14± 0.01 0.15± 0.01 0.06± 0.01 0.41± 0.02 0.13± 0.01 0.15± 0.01 0.06± 0.01

SVR 0.36± 0.02 0.14± 0.01 0.24± 0.01 0.05± 0.01 0.35± 0.01 0.13± 0.01 0.24± 0.01 0.06± 0.01

SB

Euc. 0.42± 0.02 0.14± 0.01 0.13± 0.01 0.07± 0.01 0.42± 0.02 0.14± 0.01 0.13± 0.01 0.06± 0.01

Che. 0.41± 0.01 0.15± 0.01 0.14± 0.01 0.08± 0.01 0.41± 0.01 0.15± 0.01 0.14± 0.01 0.07± 0.01

Cos. 0.40± 0.05 0.14± 0.05 0.11± 0.01 0.07± 0.05 0.40± 0.05 0.14± 0.05 0.11± 0.01 0.07± 0.05

DL

CNN 0.30± 0.02 0.13± 0.01 0.10± 0.01 0.05± 0.03 0.25 ± 0.01 0.11 ± 0.02 0.09± 0.01 0.05± 0.01

LSTM 0.33± 0.11 0.16± 0.02 0.11± 0.02 0.05± 0.01 0.40± 0.05 0.21± 0.05 0.13± 0.05 0.08± 0.02

LRCN 0.26 ± 0.02 0.13 ± 0.01 0.08 ± 0.01 0.04 ± 0.01 0.26± 0.01 0.12± 0.01 0.08 ± 0.01 0.05 ± 0.01

Task 3 Task 4

State Transition State Transition

MAE MAPE MAE MAPE MAE MAPE MAE MAPE

ST

LR 0.51± 0.01 0.16± 0.01 0.34± 0.01 0.12± 0.01 0.52± 0.02 0.16± 0.01 0.34± 0.01 0.18± 0.12

RF 0.50± 0.01 0.15± 0.01 0.32± 0.01 0.11± 0.01 0.52± 0.02 0.15± 0.01 0.32± 0.01 0.11± 0.01

SVR 0.46± 0.02 0.15± 0.01 0.37± 0.01 0.10± 0.01 0.47± 0.02 0.15± 0.01 0.37± 0.01 0.10± 0.01

SB

Euc. 0.42± 0.02 0.17± 0.01 0.45± 0.02 0.11± 0.01 0.42± 0.02 0.16± 0.01 0.45± 0.02 0.11± 0.01

Che. 0.41± 0.01 0.17± 0.01 0.46± 0.01 0.11± 0.01 0.41± 0.01 0.17± 0.01 0.46± 0.01 0.12± 0.01

Cos. 0.40± 0.05 0.18± 0.05 0.38± 0.01 0.13± 0.04 0.40± 0.05 0.17± 0.05 0.38± 0.01 0.17± 0.04

DL

CNN 0.32± 0.05 0.15± 0.01 0.32± 0.02 0.10± 0.01 0.28 ± 0.02 0.12 ± 0.02 0.32± 0.01 0.10± 0.01

LSTM 0.31± 0.06 0.16± 0.02 0.34± 0.03 0.11± 0.01 0.29± 0.02 0.13± 0.01 0.33± 0.03 0.11± 0.01

LRCN 0.29 ± 0.01 0.13 ± 0.01 0.16 ± 0.01 0.08 ± 0.01 0.29± 0.02 0.13± 0.01 0.17 ± 0.01 0.09 ± 0.01

indicates the best result in a specific task. Our proposed CNN-based model and

LRCN-based model show the most accurate predictions in all tasks. In par-

ticular, LRCN-based model demonstrates the stable results for all tasks. It at-

tributes to its ability to learn network topology present in the three-dimensional

process representation matrix. However, our deep learning approach does not

outperform in all tasks. In the short-term prediction (i.e., Task 1 and Task2),

the LSTM-based model fails to properly learn the spatiotemporal dependencies

underlying the business process when enough information is not given, showing

inferior results than baseline approaches. Also, in long-term transition predic-

tion tasks (i.e., transition prediction in Task 3 and Task 4), the CNN-based

model and LSTM-based model show inferior results compared to the statistical

23

approach.

5.2. Case study II: BPIC’12

In this case study, we use a real-life log of the application procedure for a

personal loan or overdraft at a global financing organization over the six months

from October 2011 to March 2012. Approximately 262,200 events regarding

13,087 cases are recorded for the period. This log contains three types of process:

one that refers to the states of the application, one that refers to the states of an

offer, and one that tracks the states of work items that occur during the approval

process. Since we are only interested in the events performed manually, we only

investigate the third type.

Using this log, we aim at predicting the average processing time for states

and transitions in the next 6 hours, given the historical performance of the

last 144 hours. The experiment was performed using 5-fold cross-validation.

Table 2 shows the mean absolute error (MAE) and mean absolute percentage

error (MAPE) of predicting average processing time for states and transitions.

Our proposed deep-learning-based models perform well both in state and transi-

tion predictions. In particular, the CNN-based and the LRCN-based prediction

models outperform the two baseline approaches both in the state and transi-

tion predictions. It verifies that the competency of CNN in extracting critical

features is crucial to produce accurate predictions. However, the LSTM-based

model shows inferior prediction accuracy in terms of MAPE, compared to LR

and RF, failing to learn the temporal dynamics.

5.3. Case study III: Helpdesk

The third case study log concerns a ticketing management system designed

for the help desk of an Italian software company. The process starts with the

insertion of a new ticket into the ticketing management system. The ticket is

managed by resources, and the process ends when the problem is resolved. In

this case study, we use 8,988 events by 2,542 cases from January 2011 to June

2012.

24

Table 2: MAE (hours) and MAPE of predicting average processing time for states and tran-

sitions in BPIC’12 using 5-fold cross validation

State Transition

MAE MAPE MAE MAPE

Statistical

Approach

LR 1.03± 0.18 1.20± 0.38 0.45± 0.06 0.75± 0.02

RF 0.86± 0.22 0.70± 0.01 0.39± 0.06 0.65± 0.01

SVR 0.53± 0.09 0.59± 0.01 0.30± 0.03 0.63± 0.01

Search-based

approach

Euc. 0.69± 0.12 0.77± 0.05 0.30± 0.07 0.79± 0.04

Che. 0.67± 0.12 0.78± 0.05 0.29± 0.06 0.79± 0.05

Cos. 0.45± 0.10 0.93± 0.15 0.20± 0.05 0.93± 0.14

Deep Learning

approach

CNN 0.44± 0.10 0.55± 0.02 0.19± 0.03 0.65± 0.10

LSTM 0.45± 0.10 0.87± 0.45 0.21± 0.03 0.90± 0.18

LRCN 0.44 ± 0.09 0.51 ± 0.04 0.19 ± 0.03 0.61 ± 0.03

We predict the average sojourn time for states and transitions in the next

five days using the historical performances of the last 30 days. As in the pre-

vious case study, the experiments were performed using 5-fold cross-validation.

Table 3 shows the mean absolute error (MAE) and mean absolute percentage

error (MAPE) of predicting average sojourn time for states and transitions. Our

proposed deep-learning-based models perform well both in the state prediction

and transition prediction in terms of MAE and MAPE. For state prediction,

the LSTM-based model and the CNN-based model achieve outstanding per-

formances in terms of MAE and MAPE, respectively. On the other hand, the

search-based approach using the Euclidean metric outperforms other approaches

in transition predictions.

5.4. Further experiments

In the case studies, we use a transition system with a state representation

function ls(σ) = 〈πA(σ(|σ|)〉 that represents the partial trace by the sequence

of events with the prefix length (i.e., horizon) of 1 and an event representation

function le(e) = πA(e). We performed the experiments to investigate the effect

of the different horizons to the prediction accuracy and computation time. As

25

Table 3: MAE (days) and MAPE of predicting average sojourn time for states and transitions

in Helpdesk using 5-fold cross validation

State Transition

MAE MAPE MAE MAPE

Statistical

Approach

LR 2.62± 0.16 0.64± 0.02 1.63± 0.05 0.85± 0.01

RF 2.64± 0.17 0.63± 0.03 1.62± 0.06 0.84± 0.01

SVR 2.24± 0.17 0.68± 0.02 1.31± 0.05 0.88± 0.01

Search-based

approach

Euc. 2.58± 0.32 0.63± 0.02 1.00± 0.06 0.59± 0.02

Che. 2.68± 0.27 0.63± 0.03 0.99± 0.06 0.60± 0.02

Cos. 2.49± 0.15 0.63± 0.01 1.03± 0.06 0.58± 0.03

Deep Learning

approach

CNN 2.00± 0.21 0.83± 0.16 0.79± 0.05 0.63± 0.03

LSTM 1.85± 0.18 0.75± 0.11 0.72 ± 0.05 0.58 ± 0.01

LRCN 1.71 ± 0.11 0.61 ± 0.02 0.75± 0.05 0.58± 0.05

the size of the horizon increases, the transition system has more states and

transitions. It enables prediction models to reflect more features when training.

The detailed experiment results are found in the Github repository 4. The

experiment results show that the Case Study II using the BPIC’12 event log is

affected by the increase of horizon, while there is almost no effect in the first

and third case studies. Fig. 5-(a) shows the effects of the different horizons

in the Case Study II. Note that the most accurate models of each approach

(i.e., SVR, Cos., and LRCN) are selected. The LRCN model shows the most

improved prediction accuracy as the horizon expands. On the other hand, the

extended feature exposes the prediction models to be vulnerable to overfitting.

Besides, as depicted in Fig. 5-(b), it needs more computation time for training

and prediction when the horizon increases.

6. Discussion

The three case studies on three real-life logs suggest that our proposed meth-

ods based on deep neural networks outperform the two baseline approaches by

4https://github.com/gyunamister/performance_prediction.git

26

Figure 5: Effects of varying horizon to the prediction accuracy and computation time: exper-

iments on the same setting as in Case Study II

successfully learning the temporal evolution and the spatial dependency under-

lying the business process. The first case study also shows that our proposed

method applies to any prediction tasks regardless of the prediction length (i.e.,

short-term or long-term) and the availability of data (i.e., enough or limited in-

formation). Among the deep learning approach, the LRCN-based model shows

stable performances on all prediction tasks by learning network topology (i.e.,

directly-follows relations) that is provided by the three-dimensional process rep-

resentation matrix.

Existing works on predictive business process monitoring aims at providing

timely information that enables proactive and corrective actions to improve the

business process. However, these techniques focus on making predictions, not

at the process model level, but at the instance level, failing to provide useful

knowledge of future problematic points in the business process. In this regard,

the proposed method bridges the gap between the process performance mining

and the predictive business process monitoring to provide practical information

which will facilitate proactive actions to improve the business process.

The proposed approach has some limitations. Firstly, this work does not

assess what extent managers can rely on prediction results to make operational

management decisions. There are two possible directions to deal with this lim-

itation. The first one is to calculate the required level of prediction accuracy

27

by conducting sensitivity analysis concerning the effect of prediction accuracy

in managerial decisions. For example, Park and Song provide the required level

of prediction accuracy to execute the prediction-based resource allocation in

business processes [28]. In the experiment on a real-life business process, the

sensitivity analysis demonstrates that the suggested resource allocation tech-

nique is applicable if the prediction accuracy is above 60 percent. The other

way to deal with this limitation is to develop prediction models to quantify the

prediction uncertainty, such as Bayesian Neural Networks (BNNs), which is a

promising direction for future works.

Second, the proposed approach assumes that past behaviors in a business

process can be used to predict future behaviors. However, this assumption is

invalid if there are some changes in the business environment. The changes affect

business processes and lead to concept drift in prediction models. Concept drift

means that the relation between the feature and the target variable changes due

to the external factors that causes a decrease of the prediction accuracy over

time. In this case, the predictive models should be adapted in an online manner,

i.e., the models should be updated if the prediction accuracy is below a certain

threshold.

Thirdly, we only utilize historical performances as the only input for training

the prediction models. In other words, we predict the average waiting time for

transitions based on the historical records of average waiting time in the busi-

ness process. However, these one-to-one matches between the model input and

the model output ignore other possible inuencing factors such as other related

performance measures, the context of cases, and the availability of resources.

Fourth, our intention to make the method as general as possible leads to

several parameters for the practitioners to determine before implementing the

proposed method. First of all, constructing a transition system from an event

log requires to specify the abstractions to represent the business process better.

Second, one needs to define the time window TWp,s by setting the period p and

the stride s. Since both of them are numerical values, the possible options for

the time window are infinite. Besides, the length of the model input P should

28

be presented before training the model.

Finally, since it is computationally expensive to learn deep neural networks,

it took more time to implement our deep learning approach than two baseline

approaches. The use of nonlinear activation functions in the neural network

makes the optimization problem non-convex. Since the non-convex optimization

problem contains many local optima, flat spots, and cliffs, it is challenging to find

an optimal solution to this problem. To deal with this problem, the optimizer in

deep neural network repeats the steps of evaluating the model and updating the

model parameters to step down the error surface. This search process, which is

called gradient optimization, is known to be slow.

7. Conclusion

This paper has proposed a novel method for predicting the future perfor-

mances of a business process on the process model level. The proposed method

incorporates the process discovery technique in process mining and the conges-

tion prediction technique in traffic network research. It is composed of three

steps where the first step discovers the business process model we aim at analyz-

ing, the second step represents the performance in the business process model

as a matrix upon which we can construct prediction models, and the third step

builds prediction models to predict the future performances of the business pro-

cess.

The proposed method has been validated using three real-life event logs

from different domains. All three experiments show that our proposed approach

successfully predicts the performances at the process model level. It suggests

that our proposed method is applicable to various domains with its competency

to learn spatiotemporal dependency and reflect the network topology.

Our work has important implications for both research and practice. From

an academic research standpoint, the proposed method provides a novel method

to predict the performance of business processes at the process model level. As

such, it shifts the focus of predictive process monitoring from the instance level

29

to the process model level. Existing works in predictive process monitoring

provide predictions at the instance level. This information requires proactive

actions for the singular instances, which is infeasible to managers of complex

business processes. Instead, the information acquired by predictions at the

process model level is more actionable in that it enables managers to identify

weaknesses in the process and apply remedial actions to improve them.

Moreover, this research links the realms of traffic research and the business

process management based on the analogy of traffic and business processes.

This research borrows concepts from congestion prediction in traffic research

to predict performance in business processes. This effort can be extended to

deploy other prediction tasks such as traffic flow prediction to achieve relevant

prediction results in the field of business process management. Further, other

techniques developed in traffic research, such as a method for analyzing traffic

violations, can be applied to solve related problems in the business process

management.

This paper demonstrates the importance of reflecting spatiotemporal in-

formation when building a prediction model at the process model level. The

experimental results show that the suggested models, which are designed to in-

corporate spatial dependence and temporal evolution, outperform two baseline

approaches, which do not reflect them. Also, learning proper network topol-

ogy (e.g., directly-follows relations) is another critical aspect of building reliable

prediction models.

When it comes to implications for practice, the proposed method gives prac-

titioners a ready to use tool to predict weaknesses in business processes. This

information enables them to make more informed decisions for taking corrective

and proactive actions to improve business processes and mitigate risks (e.g., by

resource allocation and risk notification). The fast evolution of technology com-

bined with the ever-changing needs of customers forces organizations to swiftly

and frequently adapt their business processes.The ability to forecast possible

problems in business processes and reacting in a proactive manner is one of

the most crucial success factors for organizations. Also, while conducting our

30

case study in the hospital, we noted an increasing requirement of executives to

flexibly and proactively deal with operational issues.

As future work, we plan to extend the proposed method by incorporating

other process-related performance measures and contextual information into the

prediction models. We also plan to apply our proposed method to predict the

performance measures from different dimensions other than time, such as qual-

ity. Second, our proposed method efficiently predicts the future performances

of a business process at the process model level and identifies the weakness in

the process. However, the predictions must be transformed into concrete reme-

dial actions. In order to deal with this, future works should present a method

for improving the performance in business processes by recommending proac-

tive actions with optimization and simulation techniques. Another important

direction of future work is to deploy prediction models that quantify the predic-

tion accuracy to support business managers to make decisions on the remedial

actions to improve performances and mitigate risks.

Acknowledgment

This paper was supported by Korea Institute for Advancement of Technol-

ogy(KIAT) grant funded by the Korea Government(MOTIE) (N0008691, The

Competency Development Program for Industry Specialist)

References

[1] M. Dumas, M. L. Rosa, J. Mendling, H. A. Reijers, Fundamentals of Busi-

ness Process Management, 2nd Edition, Springer, 2018.

[2] W. M. P. van der Aalst, Process Mining: Data Science in Action, 2nd

Edition, Springer, 2016.

[3] A. E. Mrquez-Chamorro, M. Resinas, A. Ruiz-Corts, Predictive monitoring

of business processes: A survey, IEEE Transactions on Services Computing

11 (6) (2018) 962–977.

31

[4] G. Park, M. Song, Prediction-based resource allocation using lstm and min-

imum cost and maximum flow algorithm, in: 2019 International Conference

on Process Mining (ICPM), 2019, pp. 121–128.

[5] S. A. Fahrenkrog-Petersen, N. Tax, I. Teinemaa, M. Dumas, M. de Leoni,

F. M. Maggi, M. Weidlich, Fire now, fire later: Alarm-based sys-

tems for prescriptive process monitoring, CoRR abs/1905.09568 (2019).

arXiv:1905.09568.

[6] W. M. P. van der Aalst, M. Schonenberg, M. Song, Time prediction based

on process mining, Information Systems 36 (2) (2011) 450–475.

[7] E. D. Arnheiter, J. Maleyeff, The integration of lean management and six

sigma, The TQM Magazine 17 (1) (2005) 5–18.

[8] F. Gullo, From patterns in data to knowledge discovery: What data mining

can do, Physics Procedia 62 (2015) 18 – 22, 3rd International Conference

Frontiers in Diagnostic Technologies, ICFDT3 2013, 25-27 November 2013,

Laboratori Nazionali di Frascati, Italy.

[9] C.-H. Wu, J.-M. Ho, D. T. Lee, Travel-time prediction with support vector

regression, Trans. Intell. Transport. Sys. 5 (4) (2004) 276–281.

[10] X. Ma, Z. Tao, Y. Wang, H. Yu, Y. Wang, Long short-term memory neural

network for traffic speed prediction using remote microwave sensor data,

Transportation Research Part C: Emerging Technologies 54 (2015) 187–197.

[11] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, Y. Wang, Learning traffic as images:

A deep convolutional neural network for large-scale transportation network

speed prediction, Sensors 17 (4) (2017) 818.

[12] H. Yu, Z. Wu, S. Wang, Y. Wang, X. Ma, Spatiotemporal recurrent convo-

lutional networks for traffic prediction in transportation networks, Sensors

27 (2017) 1501.

32

[13] M. Polato, A. Sperduti, A. Burattin, M. D. Leoni, Time and activity se-

quence prediction of business process instances, Computing 100 (9) (2018)

1005–1031.

[14] A. Pika, W. M. P. van der Aalst, C. J. Fidge, A. H. M. ter Hofstede, M. T.

Wynn, Profiling event logs to configure risk indicators for process delays,

in: C. Salinesi, M. C. Norrie, Ó. Pastor (Eds.), Conference on Advanced In-

formation Systems Engineering, Springer-Verlag, Berlin, Heidelberg, 2013,

pp. 465–481.

[15] B. Kang, D. Kim, S.-H. Kang, Real-time business process monitoring

method for prediction of abnormal termination using knni-based lof pre-

diction, Expert Systems with Applications: An International Journal 39

(2012) 6061–6068.

[16] D. Breuker, M. Matzner, P. Delfmann, J. Becker, Comprehensible predic-

tive models for business processes, MIS Q. 40 (4) (2016) 1009–1034.

[17] J. Evermann, J.-R. Rehse, P. Fettke, Predicting process behaviour using

deep learning, Decision Support Systems 100 (2017) 129–140.

[18] N. Tax, I. Verenich, M. L. Rosa, M. Dumas, Predictive business process

monitoring with lstm neural networks., in: E. Dubois, K. Pohl (Eds.),

CAiSE, Vol. 10253 of Lecture Notes in Computer Science, Springer, 2017,

pp. 477–492.

[19] N. Mehdiyev, J. Evermann, P. Fettke, A novel business process predic-

tion model using a deep learning method, Business & Information Systems

Engineering (07 2018).

[20] J. Zhang, F. Wang, K. Wang, W. Lin, X. Xu, C. Chen, Data-driven intel-

ligent transportation systems: A survey, IEEE Transactions on Intelligent

Transportation Systems 12 (4) (2011) 1624–1639.

33

[21] J. Wang, Q. Gu, J. Wu, G. Liu, Z. Xiong, Traffic speed prediction and

congestion source exploration: A deep learning method, in: IEEE 16th

International Conference on Data Mining, 2016, pp. 499–508.

[22] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–44.

[23] R. Collobert, J. Weston, A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning, in: Proceedings of

the 25th International Conference on Machine Learning, ICML ’08, ACM,

New York, NY, USA, 2008, pp. 160–167.

[24] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadar-

rama, K. Saenko, T. Darrell, Long-term recurrent convolutional networks

for visual recognition and description, IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 39 (4) (2017) 677–691.

[25] T. Tieleman, G. Hinton, Lecture 6.5—RmsProp: Divide the gradient by

a running average of its recent magnitude, COURSERA: Neural Networks

for Machine Learning (2012).

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,

Dropout: A simple way to prevent neural networks from overfitting, J.

Mach. Learn. Res. 15 (1) (2014) 1929–1958.

[27] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift, in: Proceedings of the 32nd In-

ternational Conference on International Conference on Machine Learning,

ICML’15, JMLR.org, 2015, pp. 448–456.

[28] G. Park, M. Song, Prediction-based resource allocation using bayesian

neural networks and minimum cost and maximum flow algorithm (2019).

arXiv:1910.05126.

34

