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A B S T R A C T   

A clinical pathway (CP) is a tool for effectively managing a care process. There are several research efforts on 
developing clinical pathways (CPs) in the process mining domain. However, the nature of the data affects data 
analysis results, and patient clinical variability makes it challenging to develop CPs. Thus, it is crucial to 
determine candidate care processes that can be standardized as CPs before applying process mining techniques. 
This paper proposed a method for assessing CP feasibility regarding clinical complexity using clinical order logs 
from electronic health records. The proposed method consists of data preparation, activity & trace homogeneity 
evaluations, and process inspection using process mining. Each step consists of metrics to measure the homo-
geneity of processes and a visualization method to demonstrate the diversity of processes based on the log. The 
case study was conducted with five surgical groups of patients from a tertiary hospital in South Korea to validate 
the proposed method. The five groups of patients were successfully assessed. In addition, the visualization 
methods helped clinical experts grasp the diversity of care processes.   

1. Introduction 

The care process is complicated and requires interaction among 
doctors, nurses, patients, and others. It usually evolves differently 
depending on multiple factors such as the patient’s characteristics, 
medical circumstances, medical professional’s judgment, and treatment 
organization, even for patients with the same disease [1–4]. A clinical 
pathway (CP) is a tool for effectively managing a care process [1,5]. 

A CP aims at the standardization of a medical process [2] and tries to 
improve treatment quality and reduce costs by eliminating unnecessary 
tasks and avoiding omissions of essential ones [1,2,6,7]. Therefore, a CP 
offers various positive effects, such as maintaining the quality of medical 
care, decreasing the hospitalization period, and preventing complica-
tions [1,2,6,7]. Owing to these advantages, CPs have been used in the 
United States since the 1980s [8], and continual efforts have been 
devoted to developing and utilizing CPs for more patient groups [9–11]. 

However, the development of a CP is not straightforward since a CP is 
usually designed manually through multiple discussions based on 
medical guidelines and the experiences of specialists from multidisci-
plinary fields. Thus, considerable time and effort are required, and 
several medical staff should be involved. 

Recently, to support CP development, various data-driven ap-
proaches have been proposed to analyze data accumulated in hospital 
information systems (HIS) and derive CPs [12–14]. Process mining is 
one of the data-driven methods aiming at the effective management of 
processes [15]. Several attempts were made in the process mining area 
to analyze medical processes. For instance, Mans et al. analyzed the care 
flow of kinetic oncology patients using trace clustering and fuzzy miner 
[16], and Lang et al. analyzed clinical processes using seven process 
mining techniques, namely α algorithm, α++ algorithm, heuristic 
miner, DWS algorithm, genetic algorithm, multi-phase miner, and re-
gion miner [13]. 
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In terms of the CP development, Xu et al. used latent dirichlet allo-
cation (LDA) to group activities with the same topics and derived a 
process model using fuzzy mining [17–19]. Huang et al. focused on 
finding major process patterns that can be considered when developing 
CPs and tried various methods such as temporal mining, dynamic pro-
gramming, and LDA [20,12,21,22]. Chen et al. proposed a distinctive 
method of extracting a typical treatment process using affinity provision 
clustering [23] while Cho et al. suggested a greedy optimization algo-
rithm utilizing fitness values, a metric used in conformance checking, to 
derive CPs [24]. These strategies allow for the discovery of more rele-
vant patterns and the development of more accurate CPs based on evi-
dence. However, exploring and analyzing huge amount of data still need 
a lot of time and efforts. 

Among several kinds of medical processes, there are some processes 
that cannot be standardized because of their complexity. When several 
variations are involved in the treatment process of a disease according to 
patients, developing a standardized clinical pathway of such treatment 
process becomes extremely difficult. For example, the process models 
derived in the study of Lang et al. were all spaghetti-like [25]. Spaghetti- 
like models are useful since they shows reality. However, understanding 
and standardizing such processes are very challenging. That is, the less 
structured models are difficult to standardize as CPs. Thus, before 
developing a CP using a data-driven approach (i.e., process mining), it is 
useful to check whether a clinical process can be standardized or not by 
investigating the complexity of the medical data. Instead of deriving 
process models with process discovery algorithms and exploring the 
structure of the derived models, the metrics on the complexity of the 
medical data provide meaningful information on the derived processes. 

In process mining, there are studies to evaluate the complexity of 
event logs [26–29]. The basic metrics are the number of unique events, 
unique traces, and average trace length [26–28]. Metrics related to 

process diversity are simple trace diversity [27], advanced trace di-
versity [27], trace similarity rate [28], and affinity [26]. There are some 
advanced metrics using the notion of entropy [29]. Such metrics are 
useful for assessing the diversity of general processes, however they are 
not suited to evaluating medical processes that contain many concurrent 
activities. 

The focus of this paper was to develop a method for evaluating CP 
feasibility by assessing the homogeneity of the care processes using 
event logs in HIS. The method included several homogeneity evaluation 
metrics and a visualization method for evaluating the complexity of the 
data from activity and trace perspectives. To validate the proposed 
method, experiments were conducted with five surgical groups of pa-
tients from a tertiary hospital in South Korea. The experiment results 
showed that the proposed metrics indicate the degree of the feasibility of 
deriving CPs. It also showed that the method was applicable when a 
group of patients is more than a hundred. 

The remaining part of this paper is organized as follows. Section 2 
defined the clinical event log and CP. Section 3 explained the proposed 
method in detail, and Section 4 presented experiments to validate the 
method. Section 5 discussed the results and limitations of this study. 
Finally, Section 6 concluded the paper. 

2. Preliminaries 

In this section, a clinical event log and a CP were defined. In HIS, 
there is the order information that contains instructions of medical 
practitioners to others such as medical staff, pharmacy, and laboratory 
[30]. A clinical event log from HIS contains detailed information about 
all the required activities during the care process [31]. A CP is a care 
process that consists of clinical orders. Note that among several types of 
care processes, in this paper we focus on surgical processes. 

2.1. Clinical event log 

A clinical event log L is a set of traces TR, where each trace corre-
sponds to a patient. A trace is a finite sequence of clinical events E. An 
event e ∈ E is a record of clinical activities such as delivering a clinical 
order, performing surgery, hospitalization, and discharge. In this study, 
only clinical order events were considered as elements composing the 
clinical event log. 

Definition 1. (clinical event). A clinical event is expressed as e = (o,t), 
where o is the clinical order of e and t is the occurring time of e. The time 
t represents the relative dates compared to the surgery dates. For 
example, a day of surgery has 0 as its time value. The time value be-
comes 1 on the next day and − 1 on the day before surgery. 

Definition 2. (clinical trace). A clinical trace is expressed as σ = 〈e1,e2,

⋯, en〉. The sequence 〈e1, e2,⋯, en〉 is a finite nonempty sequence of 
clinical events, and each event can appear more than once. The time of 
the sequence is non-decreasing, i.e., for 1⩽i⩽j⩽n : πt(ei)⩽πt(ej), where π 
is a function to obtain the value of an attribute recorded for an event. 

Definition 3. (clinical event log). A clinical event log is a set of traces. 
For m patients in the target group for assessing the feasibility of CP 
development, the clinical event log is expressed as L = {σ1,σ2,⋯,σm}, 
where each trace corresponds to a patient. 

2.2. Clinical pathway 

A typical surgical CP comprises clinical orders from the time of 
admission to the time of discharge, with the date of the surgery as the 
control point. The orders are defined daily, and the CP comprises a daily 
set of clinical orders. The t-th daily set of clinical orders Dt is expressed 
as Dt = (t, {o1,o2,⋯, on}), where t is the relative date compared to the 
surgery date, similar to t in Definition 1 and oi ∈ {o1, o2,⋯, on} is a 
clinical order. For example, D− 1 = ( − 1, {o1, o2, o3}) indicates that the 

Fig. 1. The overview of the method for CP feasibility assessment. HIS: health 
information systems, AUO: area under the order set utilization rate curve, VOT: 
variation of timing, VOF: variation of frequency, TA heatmap: trace abstraction 
heatmap, TND: trace network density, MRCPM: matching-rate-based 
CP mining. 
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orders o1,o2, and o3 should be delivered on the day before the surgery. 

Definition 4. (clinical pathway). A CP is expressed by CP = 〈D− n,⋯,

D0⋯,Dm〉, which is a combination of a daily set of clinical orders for the 
entire period from − n-th day to m-th day compared to the surgery date. 
For example, CP = 〈D− 1,D0,D1〉 signifies that the patient who is in the 
target group of the CP should obtain D− 1 on the day before the surgery, 
D0 on the surgery day, and D1 on the day after the surgery which is the 
discharge day in this case. 

3. Methodology for assessing CP feasibility 

This section describes the proposed method (Fig. 1)) to assess the 
feasibility of CP development. The method consists of data preparation, 
activity & trace homogeneity evaluations, and process inspection using 
process mining. 

3.1. Data preparation 

Clinical processes are inherently complex and heterogeneous. They 
involve a series of decisions on diseases treatment, and the complexity 
typically increases as more things require decision-making [32]. First, 
the decision depends on the clinical condition of a patient and the 
treatments for each patient could differ [33]. Even if the patient’s con-
dition is the same, the treatments may differ depending on the prefer-
ence of healthcare provider [34]. Furthermore, the process complexity 
increases further because a treatment does not involve a single person in 
charge of the entire process but rather a group of people such as doctors, 
nurses, staff, and carers [35]. Because of this nature of the medical 
processes, it is difficult to standardize the processes of all patients into 
one CP. Accordingly, CP aims to standardize the majority of patients, not 
all patients. 

Therefore, we targeted patients except outliers for CP feasibility 
evaluation and proposed to perform outlier elimination in data prepa-
ration. For outlier elimination, the sequence length [36], i.e., the length 
of hospitalization, could be used since long-term inpatients rapidly in-
crease the diversity of clinical orders and short-term inpatients reduce 
the importance of typical orders. To eliminate outliers in the length of 
hospitalization, statistical methods such as the interquartile method, 
which uses a boxplot, and Z-score, which uses a standard normal dis-
tribution could be used [37]. 

In addition to outlier elimination, event data aggregation is required 
for CP feasibility evaluation. Event data aggregation is the process of 
combining order events with low-level abstraction into high-level 
abstraction [38]. Clinical orders show low-level granularity because 
they contain detailed instructions from medical practitioners to others 
such as the medical staff, pharmacy, and laboratory [31,30]. For 
example, a medication order contains the drug name, start time, delivery 
route, dosage to be provided each time, and frequency of dosage per day 

[23]. However, high level information, such as the ingredients or pur-
pose of the drug, is sufficient to test CP feasibility. A test order also 
contains detailed information. For example, blood tests include several 
tests, such as human immunodeficiency virus screening tests and hep-
atitis B blood tests, and each test is directed by different clinical orders. 
However, the representative of them, i.e., the blood test, is sufficient to 
test the CP feasibility. 

Using the anatomical therapeutic chemical (ATC) classification sys-
tem2, the medication orders could be aggregated. The ATC code clas-
sifies drugs based on the organs or systems they act upon and their 
chemical properties. The first digit of the ATC code represents the 
anatomical group acted on by a drug. The second and third digits 
represent the pharmacological or therapeutic properties. Therefore, if 
the first three digits of the ATC code match, the medication orders can be 
classified as a drug used for the same purpose. 

3.2. Activity & Trace homogeneity evaluations 

3.2.1. Activity homogeneity evaluation 
The purpose of activity homogeneity evaluation is to investigate the 

generality of clinical orders that compose the event log. If the orders 
applied to each patient were different, i.e., the orders were not general, 
standardization would be difficult, then the target group would not be 
CP-feasible. To assess the generality of the orders, three metrics were 
developed: area under the order set utilization rate curve (AUO), variation 
of timing (VOT), and variation of frequency (VOF). 

Area under the order set utilization rate curve The AUO evaluates 
the diversity of orders. Intuitively, the diversity of orders can be eval-
uated using 1) the percentage (w.r.t. all orders) of the orders that appear 
in most of the traces or 2) the average utilization of orders. However, it 
was found that these two metrics were insufficient for evaluating the 
diversity of orders in real-world care processes. Even when the target 
was CP-feasible, the ratio of common orders was substantially small, 
making the distinction of CP-infeasible and CP-feasible cases difficult. 
The average order utilization also could not provide a comprehensive 
assessment of the generality. For example, it was assumed that there 
were ten patients and two orders o1 and o2, each of which was used by 
eight patients. Then, the utilization rate of each order was 80% and 
when the utilization of two orders with the average utilization rate was 
assessed, their generality was determined to be approximately 80%. 
However, even if each order was used by eight patients, there could be 
only six patients who utilized both of the orders; in the instance where 
two patients used o1, two patients used o2, and six patients used both. 
That is, in this case, generality calculated by the average order utiliza-
tion was 80%, but the actual generality of the two orders was 60%. 
Therefore, the AUO metric to evaluate the generality of order sets was 
developed. 

The AUO denotes the area under the order set utilization rate (OU) 
curve (Fig. 2). The OU curve plots the utilization rate of the order set as 
the elements of the order set change. Starting with the entire order set, 
the least used order was excluded. The importance of the excluded order 
(x-axis in Fig. 2) and the utilization rate of the order set after exclusion 
(y-axis in Fig. 2) were then calculated and plotted to the graph. There-
after, the next least used order continued to be excluded, calculating the 
x and y values, and plotting the graph; this step was repeated until the 
entire order set became empty. 

The importance of the order was calculated as follows: 

I

(

ok

)

= r

({

ok

})/
∑m

i=1
r

({

oi

})

, (1)  

where O = {o1, o2,⋯, om} be the entire set of orders from the clinical 
order log, I(ok) be the importance of order k, and r(S) be the proportion 

Fig. 2. Examples of the OU curve. A: OU curve of the target with high order 
homogeneity; B: OU curve of the target with low order homogeneity. The area 
of the shaded part is AUO. 

2 https://www.whocc.no/atc/structure_and_principles/ 
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of patients who use order subset S⊂O. 
After the importance of the orders was obtained, they were sorted in 

descending order. Then, the AUO was calculated as 

AUO =
∑m− 1

i=0
I

(

o′
m− i

)

r

(
⋃m− i

j=1
o′

j

)

, (2)  

where O′ = {o′1, o′2,⋯, o′m} is the sorted order set. The AUO value 
increased as the ratio of important orders and the ratio of patients using 
the orders increase. In Fig. 2, the AUO of graph A was higher than that of 
graph B, since the ratio of important orders was higher and the ratio of 
patients using the orders increased at a faster rate in graph A. 

Variation of timing The VOT is a metric used to evaluate the di-
versity of times at which orders are used, which was not considered in 
the AUO. This metric was required because the CP standardized the tasks 
along the timeline. The VOT was defined as follows: 

VOT =
1
m

∑m

i=1

1
l
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2
, (3)  

where O = {o1, o2,⋯, om} is a set of orders and D = {d1, d2,⋯, dl} is a set 
of relative dates, xij is the number of patients who used order oi on 
relative date dj, and n is the total number of patients. When xij is close to 
n or 0, the VOT of an order is close to 1. When xij is neither large nor 
small, i.e., close to n/2, the VOT of the order becomes nearly 0. The VOT 
of the entire order is the average of the VOT of each order. 

For example, when there is a log L = {〈(o2, − 1),(o1,0),(o2,0)〉3
,〈(o1,

0),(o2,0),(o2,1)〉3
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= 0.45 , so VOT of log L becomes 0.725. 

Variation of frequency The VOF is a metric used to evaluate the 
homogeneity of the number of times an order has been used. Using the 
same order at a different frequency for each patient can also be an 
obstacle for standardization; hence, the VOF should be evaluated. The 

VOF was defined as follows: 

VOF =
1
m
∑m

i=1
maxj∈{1,⋯,l}

(
1
n
∑n

k=1

(
yk

ij − yij

)2
)

, (4)  

where yk
ij is the number of times patient pk used order oi on day dj. The 

VOF is the average of the largest standard deviation of each order; 
because a frequency deviation in one day affects the standardization of 
the process. Contrary to other metrics, a small VOF indicates a high 
feasibility of CP development. 

For example, when there is a log L = {〈(o1, − 1), (o2, − 1), (o1, 0),
(o2, 0)3

,(o1,1),(o2,1)〉,〈(o1, − 1)2
,(o2, − 1)2

,(o1,0),(o2, 0)7
〉,〈(o1, − 1),(o2,

− 1)〉, 〈(o1, − 1), (o2, − 1), (o2, 0)5
〉, 〈(o1, − 1), (o2, − 1), (o2,0)2

〉}, VOF of 
order o1 = max(std([1,2, 1,1, 1]), std([1,1,0, 0,0]), std([1,0,0, 0,0])) =
0.490 and VOF of order o2 = max(std([1,2, 1,1, 1]), std([3,7,0, 5,2]),
std([1,0,0, 0,0])) = 2.417 , so VOF of log L becomes 1.453. 

3.2.2. Trace homogeneity evaluation 
The purpose of trace homogeneity evaluation is to examine the 

variation in the processes experienced by target patients (i.e., the variety 
of the traces). Herein, a visualization method was proposed, trace 
abstraction heatmap (TA heatmap), and a metric, trace network density 
(TND). 

Trace abstraction heatmap The TA heatmap (Fig. 3) is a visualiza-
tion method for evaluating the similarity of the trace length (i.e., the 
length of hospitalization) and the similarity of the occurrence time of 
major events (i.e., the time interval between admission and surgery). To 
roughly grasp the similarity of the traces, the TA heatmap is effective. 

The heatmap was drawn by coloring the cells corresponding to each 
date (x-axis) during hospitalization and the length of hospitalization (y- 
axis) for each patient. The dates during the hospitalization were relative 
dates based on the surgery date. For example, if a patient was admitted 
to a hospital on January 19, underwent surgery on January 20, and was 
discharged on January 22, the relative dates of admission and discharge 
would be − 1 and 2, respectively, and the length of hospitalization would 
be 4. Then, the cells of ( − 1,4),(0,4),(1,4), and (2, 4) were colored. The 
traces of patients who showed the same time interval between admission 
and surgery and the same length of hospitalization were colored on the 
same cells. Consequently, the homogeneity of the trace based on the 
intensity of the color could be assessed. 

In Fig. 3, for example, the graph (a) was considerably homogeneous 
because only a narrow area (A) was dark and > 70% of patients were in 
this area. However, the graph (b) was not homogeneous because the 
dark area (B) was wide and only ≈ 25% of patients were in the darkest 
area (C). 

Trace network density While the heatmap roughly evaluates trace 
homogeneity using only the trace length and time of the major event, the 
TND evaluates homogeneity by directly comparing traces between 

Fig. 3. Examples of the TA heatmap. (a): very homogeneous; the darkest area A: > 70% of patients, no other dark area but A. (b): not so homogeneous; the darkest 
area C: ≈ 25% of patients, dark area B (C⊂B). 

Fig. 4. Examples of trace network of five patients.  
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patients. A network graph was used to compare all traces. A node of the 
graph represents a trace of a patient, and two nodes were connected 
when the similarity between two order traces exceeded a certain 
threshold. Then, the homogeneity of traces was quantified using 
network density that was defined as the number of connections divided 
by the total possible connections. The number of connections increased 
as the pair of patients with similar traces increased, and the TND 
increased as the number of links increased (Fig. 4). 

The similarity of traces were evaluated from various viewpoints, 
such as the activity and originator [39]. From the activity perspective, 
the similarity between order vectors was calculated using the jaccard 
distance [40]. The order vector represents the order occurrences in each 
patient’s trace among all orders in the event log. For example, if the 
order set in the event log was O = {o1, o2, o3, o4, o5} and only o2 and o5 
appeared in a patient’s trace, the patient’s order vector was expressed as 
v = (0,1,0,0,1). 

The TND varies depending on the criterion (i.e., threshold) used to 
determine whether to connect the nodes. Selecting an appropriate 
threshold requires a preliminary analysis based on a comparison be-
tween CP-feasible and CP-infeasible data. In the experiment, it was 
found that acceptable results were obtained when the threshold was 
around 70%. 

3.3. Process inspection using process mining 

In this step, the process was verified using process mining techniques 
for the target determined in the previous step to ensure a high homo-
geneity of the activity and trace. The previous steps enable to reduce the 

Fig. 5. Example of trace alignment in an analysis of the process in the medical 
field: Trace alignment results of diabetic patients and non-diabetic patients 
[43]. A: orders common in both diabetic and non-diabetic patients, B: orders 
common only in di.abetic patients. 

Fig. 6. The flow diagram of MRCPM algorithm.  
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number of candidate processes by calculating the metrics. The aim of 
this step is providing useful (visual) information to medical staffs to help 
them determining the CP-feasibility. 

Using trace alignment and process model discovery, the similarity 
between traces and the expected process model was visualized. The CP 
development used matching-rate-based CP mining (MRCPM) [24]. The 
CP feasibility was examined more in detail based on the validation of 
medical experts on the CP derived using the MRCPM algorithm, and the 
derived CP was used as the reference model. Even if the CP development 
is sufficiently assessed to be possible in the previous step, if the visual-
ization result was complex and the CP derived using the MRCPM algo-
rithm was invalid, the target was determined to be CP-infeasible. 

3.3.1. Visualization using trace alignment and process map discovery 
Trace alignment aligns traces while minimizing the substitution, 

insertion, and deletion of activities [41]. Therefore, trace alignment can 
be used to visually evaluate the information [42] that is difficult to grasp 
using only the TND value, such as identifying the commonly used and 
uncommonly used orders (Fig. 5). As the number of common orders 
decreased and the number of individual orders increased. The feasibility 
of CP development is low when the total aligned length is long. 

A process model can also be used to determine the feasibility of CP 
development. Complex and varying traces yielded spaghetti-like models 
that were difficult to understand. Therefore, if the derived process model 
was excessively complex to comprehend, it could be concluded that the 
feasibility of the CP development was low. 

3.3.2. CP development using matching-rate-based clinical pathway mining 
The MRCPM algorithm discovers the most suitable CP from the order 

traces of patients using the matching rate [44]. The matching rate is a 
metric to represent the conformance between CP and an order trace; this 

Table 1 
Summary of data.  

Target 
group 

GS51 OL21 OG3 JRC15 OG4 

Patients: 
total 

135 220 1030 522 646 

Orders 521 347 347 323 295 
Patients: no 

CP 
2 (1.48%) 7 (3.18%) 0 2 (0.38%) 1 (0.15%) 

Patients: 
stop CP 

69 
(51.11%) 

74 
(33.64%) 

147 
(14.27%) 

18 
(3.45%) 

20 
(3.10%) 

Patients: 
complete 
CP 

64 
(47.41%) 

139 
(63.18%) 

767 
(85.73%) 

500 
(96.17%) 

542 
(96.75%) 

CP-feasible 
level 

poor fair fair good good  

Table 2 
Summary of prepared data.  

Target group GS51 OL21 OG3 JRC15 OG4 

Patients: 
total 

127 204 781 509 542 

Orders 94 80 78 83 67 
Patients: no 

CP 
2 (1.57%) 4 (1.96%) - - - 

Patients: stop 
CP 

61 
(48.03%) 

61 
(29.90%) 

14 
(1.79%) 

9 (1.77%) - 

Patients: 
complete 
CP 

64 
(50.39%) 

139 
(68.14%) 

767 
(98.21%) 

500 
(98.23%) 

542 
(100%) 

CP-feasible 
level 

poor fair good good good  

Fig. 7. AUO, VOT, and VOF values of GS51, OL21, OG3, JRC15, and OG4.  

Fig. 8. TA heatmaps of GS51, OL21, OG3, JRC15, and OG4. Darkness of color: the relative magnitude of patient proportion.  
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metric is used as the fitness measure in conformance checking [45]. The 
CP derived using the MRCPM algorithm can be used as a reference for CP 
development after the feasibility evaluation of an expert. The MRCPM 
algorithm derives an optimal CP in a greedy way choosing the best order 
in each step [24]. The optimal CP started with an empty set; at this time, 
the average matching rate was zero. To compose the optimal set, the best 
action was choosing the most utilized orders. Thus, the most utilized 
order was continuously added to the optimal set at each step, and the 
average matching rate kept increasing at some point. However, the 
average matching rate started to decrease after the point because an 
order that is not used by the majority of the patients starts to be included 
in the optimal set. Orders stopped being added to the set after that, and 
the set became the optimal CP. The detailed procedure of the MRCPM 
algorithm [24] is shown in Fig. 6. 

4. Evaluation 

Several experiments were performed to validate the proposed 
method. First,the proposed method was applied to real-world data with 
different levels of CP feasibility and compared the results. Second, an 
experiment was conducted using synthetic data to verify the feasibility 
representation ability of metrics in the proposed method. The degree of 
validity was changed ten times and the changes in the metric values 
were observed. Finally, experiments were performed to determine the 
appropriate number of sample data to apply the presented metrics. 

4.1. Data 

The proposed method was assessed using patients’ order data from 
the HIS in a tertiary hospital in South Korea. After discussion with 

Fig. 9. Trace network graphs of GS51, OL21, OG3, JRC15, and OG4. Edges were connected when the trace similarity between two nodes is more than 75%.  

Fig. 10. Trace alignment results of GS51, OL21, OG3, JRC15, and OG4 from randomly sampled 20 patients’ traces.  
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medical experts in the hospital, five surgical CPs were selected, named 
GS51, OL21, OG3, JRC15, and OG4. The selection was based on inter-
ruption rates. The interruption rate referred to the percentage of patients 
who stopped following CP. The interruption occurred since the CP did 
not provide proper orders for a patient. It is known that clinical pro-
cesses with high interruption rates have more variations and are difficult 
to standardize. 

GS51 is a nine-day CP for patients receiving pan-
creaticoduodenectomy, known as the Whipple procedure. The operation 
removes the head of the pancreas and the first part of the small intestine 
(duodenum), including the gallbladder and bile duct. OL21 is a five-day 
CP for patients receiving minor head and neck surgery, primarily for 
parotidectomy, submandibular gland resection, lipoma excision, and 
glossectomy, which the otolaryngology department categorized as 
relatively simple. OG3 is a four-day CP made by obstetrics and gyne-
cology. It is applied to patients receiving laparoscopic surgery when a 
patient undergoes total laparoscopic hysterectomy (TLH) operation for 

uterine myoma. JRC15 CP is a four-day CP for patients with shoulder 
injuries requiring rotator cuff repair or superior labrum anterior to 
posterior (SLAP) repair. OG4 is similar to OG3; it is a four-day CP for 
patients receiving laparoscopic surgery. However, OG4 CP is applied to 
pelviscopy procedures for removing benign neoplasms. Hereafter, each 
group of patients was called as the name of the target CP. 

For GS51, OL21, JRC15, and OG4, the clinical records between 
December 2018 and December 2019 were extracted; for OG3, the clin-
ical records between January 2012 and April 2016 were extracted. 
Table 1 shows the summary statistics. The number of patients for GS51, 
OL21, OG3, JRC15, and OG4 were 135, 220, 1030, 522, and 646, 
respectively. The number of orders used for GS51, OL21, OG3, JRC15, 
and OG4 were 521, 347, 347, 323, and 295, respectively; here, orders 
that were used for only one patient were excluded. The interruption 
rates for GS51, OL21, OG3, JRC15, and OG4 were 51.11%, 33.64%, 
14.27%, 3.45%, and 3.10%, respectively. According to the interruption 
rates, five sets were rated into three levels in the CP feasibility: GS51 as 

Fig. 11. Process models of GS51, OL21, OG3, JRC15, and OG4 discovered by Disco (activities threshold: 50%, paths threshold: 50%).  
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poor, OL21 and OG3 as fair, and JRC15 and OG4 as good. 
Note that this study was approved (IRB No. B-1609–361-105) by the 

Institutional Review Board of the Seoul National University Bundang 
Hospital, which waived patients’ informed consent. All EHR data were 
deidentified and then provided to the researchers for this study. 

4.2. Method validation using real-world data 

We applied the proposed method to the five surgical groups and 
examined whether the results are consistent with the feasibility level. 

4.2.1. Data preparation 
The extracted data were prepared for CP feasibility assessment as 

described in Section 3.1. Table 2 shows the summary statistics of data 
after preparation. The number of patients for GS51, OL21, OG3, JRC15, 
and OG4 were 135, 220, 1030, 522, and 646. The number of orders used 

for GS51, OL21, OG3, JRC15, and OG4 were 94, 80, 78, 83, and 67; here, 
orders that were used for only one patient were excluded. The inter-
ruption rates for GS51, OL21, OG3, JRC15, and OG4 were 49.03%, 
29.90%, 1.79%, 1.77%, and 100%; therefore, we classifiedGS51 as poor, 
OL21 as fair, and OG3, JRC15, and OG4 as good to implement a CP. 

OG3 became ‘good’ from ‘fair’ after the data preparation. This is 
because OG3 contained several outliers that could not be standardized 
as a CP. If the outliers are removed by preprocessing, a CP can be 
developed from the remaining patients. In the field, CP development is 
conducted targeting only about 70–80% of patients since there are many 
outliers in most medical processes. Thus, the ground truth level of each 
dataset was set after the data preparation; i.e., GS51 as ‘poor,’ OL21 as 
‘fair,’ and OG3, JRC15, and OG4 as ‘good.’. 

4.2.2. Activity & Trace homogeneity evaluation 
The feasibility of each target in terms of activity and trace homo-

Fig. 12. AUO, VOT, VOF, and TND vs. data composition ((100-x)% of OG4  + x% of JRC15). The x increases by 10. The values were derived by averaging 100 results 
from random sampling. ◆: AUO, •: VOT, ▴: VOF, ▪: TND. 

Fig. 13. AUO, VOT, VOF, and TND vs. data composition ((100-x)% of OG4  + x% of GS51.). The x increases by 10. The values were derived by averaging 100 results 
from random sampling. ◆: AUO, •: VOT, ▴: VOF, ▪: TND. 

J. Lim et al.                                                                                                                                                                                                                                      



Journal of Biomedical Informatics 128 (2022) 104038

10

geneity was evaluated. First, to assess the activity homogeneity, AUO, 
VOT, and VOF were calculated and the results were compared between 
GS51, OL21, TLH, JRC15, and OG4. The AUO and VOT increased, and 
VOF decreased as the feasibility increased (Fig. 7). The AUO values of 
GS51, OL21, OG3, JRC15, and OG4 were 0.59, 0.67, 0.76, 0.77, and 
0.78, respectively (GS51 < OL21 < OG3 < JRC15 < OG4). The VOT 
values of GS51, OL21, OG3, JRC15, and OG4 were 0.70, 0.85, 0.98, 
0.93, and 0.98, respectively (GS51 < OL21 < JRC15 < OG3 = OG4). The 
corresponding VOF values were 0.43, 0.32, 0.14, 0.22, and 0.10 (GS51 >
OL21 > JRC15 > OG3 > OG4). 

Second, using the TA heatmap and TND metric, the trace homoge-
neity of GS51, OL21, OG3, JRC15, and OG4 were compared. The simi-
larity of the length of stay (LOS) and time interval (TI) between 
admission and surgery increased as the CP feasibility increased. In Fig. 8, 
GS51 has the broadest range of dark areas, and OL21 has a narrower 
range of dark regions than GS51, and OG3, JRC15, and OG4 have the 
densest dark area, which indicated that more patients of OG3, JRC15, 
and OG4 had similar LOS and TI between admission and surgery. Patient 
proportions of the darkest areas were also discriminative: GS51 was 
0.181, OL21 was 0.358, OG3 was 0.997, JRC15 was 0.772, and OG4 was 
1.0. 

The TND increased as the feasibility increased: 0.04 for GS51, 0.30 
for OL21, 0.53 for OG3, 0.47 for JRC15, and 0.60 for OG4. The trace 
network graph intuitively showed the difference (Fig. 9). GS51 and 
OL21 have many disconnected nodes, which were sparsely connected, 
whereas OG3, JRC15, and OG4 have few unconnected nodes, which 
were tightly connected. 

4.2.3. Process inspection using process mining 
The complexity of the actual process was visualized using process 

mining. First, trace alignment was used to align the traces in the event 
log and compared how similar the traces were. A total of 20 patients 
were randomly selected for each CP and aligned traces composed of 
orders whose utility rate was over 10% (Fig. 10). The traces of GS51 
were poorly aligned; the aligned full length was 481. It was much more 
than the number of orders each patient used during the hospitalization; 
average: 170.0, min: 119, and max: 221. OL21 was aligned better than 
GS51. The aligned full length was 111, while the average number of 
orders each patient used was 52.0 (min: 36, max: 73). The aligned full 
lengths of OG3, JRC15, and OG4 were much shorter than GS51 and 
OL21. The aligned lengths were 51 for OG3, 72 for JRC15, and 58 for 
OG3, though the average number of orders (min, max) in each group 
was 37.3 (34, 42), 36.0 (33, 53), and 41.7 (30, 49). 

Here, we presented the trace alignment results for 20 patients due to 
space constraints. Still, it was similar to the trace alignment results for 
all patients, indicating that the more feasible the CP, the better the trace 
alignment. 

Second, process models were derived using the same data in the trace 
alignment (Fig. 11). Disco [46], a popular tool for process discovery was 
used. The threshold setting used for process discovery was 50% of ac-
tivities and 50% of paths. The complexity of the process map was the 
same as the result of the trace alignment. The map of GS51 was most 
complicated, the map of OL21 was less complicated than GS51, and the 
maps of OG3, JRC15, and OG4 were much more straightforward than 
GS51 and OL21, although the process map was derived on the same 
setting. 

Finally, using MRCPM algorithm, CPs were discovered and the 
feasibility level was compared with the expected matching rate from the 
derived CPs. The average matching rate increased as the CP feasibility 
increased: 65.1 for GS51, 73.8 for OL21, 83.4 for OG3, 81.0 for JRC15, 

Fig. 14. Box plots of AUO, VOT, VOF, and TND of each CP group when the sample size was 20, 50, and 70 (n = 100). – –: The smallest whisker of AUO, VOT, and 
TND or the largest whisker of VOF in good feasibility groups, – • –: The smallest whisker of AUO, VOT, and TND or the largest whisker of VOF in the fair feasi-
bility group. 
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and 85.1 for OG4. 

4.3. Metric validation using synthetic data 

In addition to experiments with real-world data, metric validation 
was performed using synthetic data to verify the feasibility representa-
tion ability of metrics. Previously, the results of each step of the method 
was compared according to the level of feasibility by dividing the five 
real-world datasets into three feasibility levels, whereas, here, 11 
datasets were synthesized with different activity and trace homogeneity 
and the values of AUO, VOT, VOF, and TND were compared. 

Two experiments were conducted. First, two homogeneous groups, 
OG4 and JRC15, were synthesized. To generate 11 datasets, the order 
logs of two patient types were combined: (100 − x)% from OG4 + x% 
from JRC15 (x = 0 to 100 by 10) summing up the total 300 traces. 
Second, homogeneous group, OG4, and heterogeneous group, GS51, 
were synthesized. The datasets were synthesized in the same way as 
synthesis of OG4 and JRC15, aside from the size of each dataset. GS51 
had only 127 traces, which was not enough to generate 300 traces. 
Therefore, in the second experiment with synthetic data, each dataset 
was synthesized to have 120 traces. The total traces were randomly 
selected 100 times and the metric values were derived by averaging 100 
results. 

In the first experiment, AUO, VOT, and TND increased, and VOF 
decreased as the graph went to both ends, which were homogeneous 
since the dataset comprised only order log of OG4 or JRC15 (Fig. 12). 

In the second experiment, the values of AUO, VOT, and TND tended 
to decrease, and VOF tended to increase, as the percentage of GS51 
increased (Fig. 13). After the percentage of GS51 was over 50%, the 
increasing or decreasing size became smaller and AUO increased as the 
percentage of GS51 increased. 

4.4. Sample size test for valid evaluation 

Lastly, a sample size test was conducted to inspect the effect of data 
size on suggested metrics. Samples of size 20, 50, 70, 100, 150, and 200 
traces were randomly selected from each group of GS51, OL21, OG3, 
JRC15, and OG4 100 times, and AUO, VOT, VOF, and TND were 
calculated, and then they were compared. Note that GS51 was not tested 
with a data size of 150 and 200, since the total traces of GS51 were only 
127. During sampling, the ratio of patients who did not use the CP, who 
stopped following the CP partway through, and who completed a CP 
remained the same. 

The proposed metrics were reliable when the sample size was over 
100, i.e., the traces in the order log was over 100. In other words, AUO, 
VOT, VOF, and TND can distinguish groups with different feasibility 
levels (i.e., poor, fair, and good level) when the sample size was over 
100. In Fig. 14, the whiskers of the poor, fair, and good groups over-
lapped when the sample size was less than 100; however, in Fig. 15, the 
whiskers did not overlap when the sample size was over 100. 

4.5. Comparison with other log complexity metrics 

A comparative evaluation of the proposed metrics was conducted 
with the 19 metrics of Back et al. [29]. As a result, three metrics, global 
block entropy (GB), difference-Based k-block entropy rate with the third 
k estimator (DER), and Lempel–Ziv entropy rate (LZ), among 19 metrics 
could sort three levels of CP feasibility (Table 3). However, it was 
concluded that our metrics were more appropriate to the assessment of 
CP feasibility because the three metrics showed a small gap between 
different levels (Fig. 16 a-c) compared to that our metrics which showed 
a large gap between different levels (Fig. 7 and Fig. 16 d). In the result of 
applying GB, the gap between ’fair’ and ’good’ was small compared to 

Fig. 15. Box plots of AUO, VOT, VOF, and TND of each CP group when the sample size was 100, 150, and 200 (n = 100). – –: The smallest whisker of AUS, SPD, and 
VOT or the largest whisker of VOF in good feasibility groups, – • –: The smallest whisker of AUS, SPD, and VOT or the largest whisker of VOF in the fair feasi-
bility group. 
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the gap between ’poor’ and ’fair,’ so GB was inappropriate to distinguish 
between ’fair’ and ’good.’ In the result of applying DER and LZ, the gap 
between ’poor’ and ’fair’ was small compared to the gap between ’fair’ 
and ’good,’ so DER and LZ were inappropriate to distinguish between 
’poor’ and ’fair.’ Additionally, GB had a limitation in computational 
complexity; our metrics, DER, and LZ took less than one minute to 
calculate, but GB took up to 20 min. 

5. Discussion 

In the case study, it was confirmed that the homogeneity of clinical 
orders, the uniformity of order usage, the diversity in the hospitalization 
period and surgery timing, and the similarity of traces were properties 
that can identify a CP-feasible group. The experiments showed that the 
metrics (AUO, VOT, VOF, TND), the visualization method (TA heat-
map), and process mining techniques (trace alignment, process discov-
ery, MRCPM) were reasonable to assess these characteristics. 

As the homogeneity increased, AUO, VOT, and TND increased, and 
VOF decreased; thus, the CP-feasible groups could be distinguished 
using these metrics. The TA heatmap illustrated the diversity in the 
hospitalization period and surgery timing well, so the clinical experts 
evaluated that the heatmap was useful to grasp the variety at once. 
Furthermore, using process mining techniques, the group of patients 
with higher feasibility demonstrated to have a more structured process 
with higher matching rates. They had a short aligned result in trace 
alignment and had a more straightforward process model in process 
discovery. 

The patient groups with high CP feasibility, i.e., OG3, JRC15, and 
OG4, were characterized by shorter hospitalizations than OL21 and 
GS51. In other words, the shorter the hospitalization period, the higher 
the homogeneity of activity and trace. On the other hand, longer hos-
pital stays showed lower uniformity of orders and had more variations. 
The AUO and TND values, which were metrics that did not consider the 
frequency and time of orders, decreased as the hospitalization period 
increased. It indicated that the various kinds of orders were used as the 
hospitalization period increases. Therefore, for the surgeries with longer 
hospital stays, it may be necessary to develop CPs for only 2–3 days 
before and after the surgery when there exists higher homogeneity of 
orders. 

In the two experiments with synthetic data, the metrics were 
confirmed to express homogeneity well. In the first experiment, which 
mixed two homogeneous data (OG4 and JRC15), the lowest homoge-
neity resulted when the two data were half-mixed. This was a result 
showing that the metrics could express homogeneity well. In the second 
experiment, which mixed homogeneous data (OG4) and heterogeneous 
data (GS51), the homogeneity tended to decrease as the proportion of 
heterogeneous data increased. When the ratio of GS51 exceeded half, 
the change in metrics decreased, and the value AUO rather increased (an 
increase of AUO shows that homogeneity increased). This result was 
caused since the heterogeneity from combining two different data 
worked with the heterogeneity of GS51 itself. Thus, it could be 
concluded that the metrics could represent the homogeneity well. 

In the analysis for estimating the suitable sample size, the proposed 
metric worked well in a group of more than 100 patients. The metrics 
assessed the diversity in orders and traces, so when the number n of 
patients was small, the diversity decreased; consequently, the metrics 
evaluate the feasibility optimistically. When the test with different n 
from 20 to 200 was performed, the worst metric values, i.e., the case 
considered the least feasible, were similar regardless of data size; how-
ever, the best metric values, i.e., the case considered the most feasible, 
increased as data size decreased. Nevertheless, when n > 100, the best 
value did not interfere with classifying the level of CP feasibility, and it 
could be concluded that the method should be used when patients in a 
group were more than 100 (n > 100). 

Table 3 
AUO, VOT, VOF, TND, and Back et al.’s 19 metrics values.   

GS51 OL21 OG3 JRC15 OG4 Fail cases 

AUO 0.59 0.67 0.76 0.77 0.78 – 
VOT 0.7 0.85 0.98 0.93 0.98 – 
VOF 0.43 0.32 0.14 0.22 0.1 – 
TND 0.04 0.3 0.53 0.47 0.6 – 
Global block 

entropy 
22.78 18.51 16.9 17.8 16.52 – 

Lempel–Ziv 
entropy 

2.55 2.5 1.74 1.87 1.64 – 

Difference-based 
k-block entropy 
rate (estimator 
3) 

1.74 1.72 1.46 1.58 1.33 - 

Trace entropy 7 7.68 9.61 8.99 9.08 GS51  <
OL21  <

OG3, 
JRC15, 

OG4 
Prefix based 

entropy 
15.41 13.58 12.96 14 12.65 OL21  <

JRC15 
Kozachenko- 

Leonenko 
entropy 

5.25 4.9 5.71 5.46 5.12 GS51  <
OG3, 

JRC15 
K-nearest 

neighbor 
entropy (k = 1) 

5.25 4.9 5.71 5.46 5.12 GS51  <
OG3, 

JRC15 
K-nearest 

neighbor 
entropy (k = 2) 

4.3 4.05 4.85 4.58 4.28 GS51  <
OG3, 

JRC15 
K-nearest 

neighbor 
entropy (k = 3) 

3.83 3.62 4.42 4.13 3.86 GS51  <
OG3, 

JRC15, 
OG4 

K-nearest 
neighbor 
entropy (k = 4) 

3.51 3.33 4.13 3.83 3.58 GS51  <
OG3, 

JRC15, 
OG4 

Difference-based 
k-block entropy 
rate (estimator 
1) 

0 0 − 0.01 0 − 0.01 GS51  =
OL21  =
JRC15 

Difference-based 
k-block entropy 
rate (estimator 
2) 

0.12 0.24 0.5 0.46 0.49 GS51  <
OL21  <

OG3, 
JRC15, 

OG4 
Difference-based 

k-block entropy 
rate (estimator 
4) 

1.74 1.72 4.33 1.58 1.33 GS51  <
OG3 

Difference-based 
k-block entropy 
rate (estimator 
5) 

1.08 1.06 1.05 1.14 0.94 OL21  <
JRC15 

Ratio-based k- 
block entropy 
rate (estimator 
1) 

2.27 2.56 2.89 2.3 2.12 GS51  <
OL21  <

OG3 

Ratio-based k- 
block entropy 
rate (estimator 
2) 

0.35 0.55 0.93 0.82 0.85 GS51  <
OL21  <

OG3, 
JRC15, 

OG4 
Ratio-based k- 

block entropy 
rate (estimator 
3) 

4.51 4.62 4.33 4.17 4.08 GS51  <
OL21 

Ratio-based k- 
block entropy 
rate (estimator 
4) 

4.51 4.62 4.33 4.17 4.08 GS51  <
OL21 

Ratio-based k- 
block entropy 
rate (estimator 
5) 

3.13 4.62 4.33 4.17 4.08 GS51  <
OL21  

J. Lim et al.                                                                                                                                                                                                                                      



Journal of Biomedical Informatics 128 (2022) 104038

13

6. Conclusion 

This paper proposed a method for assessing CP feasibility regarding 
clinical complexity using clinical order logs to identify the group of 
patients whose care process could be managed using CP. Using the 
proposed method, hospitals could reduce the cost of developing and 
maintaining CP since the proposed method helps to find appropriate 
target processes that can be standardized as CPs. Standardization of 
treatment processes allowed hospitals to take all the best practices and 
combine them into a single, well-defined process. In addition, a stan-
dardized process could be a good treatment guideline for medical staff. 
Thus, hospitals can gain more patients’ satisfaction and improve the 
quality of care for diseases. The utilization of standard processes can also 
reduce the operating cost of hospitals. 

The proposed method consisted of data preparation, activity & trace 
homogeneity evaluation, and process inspection using process mining. 
For evaluating activity homogeneity, three metrics were developed, 
namely AUO, VOT, and VOF, to evaluate the generality of orders in the 
log. For trace homogeneity evaluation, TA heatmap was suggested as a 
visualization method to help analyze the homogeneity of surgery tim-
ings and hospitalization periods and a metric, TND, to measure the 
similarity of traces. Finally, in the process inspection step, a trace 
alignment, process discovery, and MRCPM were proposed to inspect the 
process of CP-feasible target. In the experiments, the method was vali-
dated and the minimum sample size required to apply the method was 
estimated. Using the proposed method, the CP-feasible group could be 
identified in advance and the success rate of data-driven CP develop-
ment was increased. 

This study has some limitations. First, the proposed metrics was 
validated with a case study using five real-world data sets. However, the 
reference values were not provided to classify the CP-feasible levels. 
Thus, more experiments are needed to investigate the reference values. 
Second, the proposed method focused on the surgical processes. How-
ever, there are also other processes requiring CP, such as acute and 
chronic conditions [47]. The surgical processes are relatively homoge-
neous. However, the care process for an acute or chronic condition 
varies in length and interval between visits based on patients. Last, all 
the orders were treated as entirely distinct. However, some orders were 
quite similar even though they had different order codes. Considering 
the similarity among orders, more standardized CPs could be generated. 
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